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B Auxiliary lemmas

Lemma B1 (Lusin): For any measurable f : [0, 1]2 → R and ε > 0 there exists a compact

Eε ⊆ [0, 1]2 with Lebesgue measure at least 1− ε such that f is continuous when restricted

to Eε. See Dudley (2002) Theorem 7.5.2.

Lemma B2 (Spectral): Let f : [0, 1]2 → R be a bounded symmetric measurable function

and Tf : L2([0, 1])→ L2([0, 1]) the associated integral operator (Tfg)(u) =
∫
f(u, τ)g(τ)dτ .

Tf admits the spectral decomposition f(u, v) =
∑∞

r=1 λrφr(u), φr(v) in the sense that

(Tfg)(u) =
∫
f(u, τ)g(τ)dτ =

∑∞
r=1 λrφr(u)

∫
φr(τ)g(τ)dτ for any g ∈ L2([0, 1]). Each

(λr, φr) pair satisfies
∫
f(u, τ)φr(τ)dτ = λrφr(u) where {λr}∞r=1 is a multiset of bounded

real numbers with 0 as its only limit point and {φr}∞r=1 is an orthogonal basis of L2([0, 1]).

See Birman and Solomjak (2012) equation (5) preceding Theorem 4 in Chapter 9.2.

The spectral decomposition in Lemma B2 is different than the usual one for matrices. That

is, if Y is an N ×N dimensional symmetric real-valued matrix then Yij =
∑N

r=1 λrφirφjr.

Each (λr, φr) pair satisfies
∑N

j=1 Yijφjr = λrφir where {λr}Nr=1 is a multiset of real numbers

and {φir}Ni,r=1 is an N ×N orthogonal matrix with rth column denoted by φr.

Lemma B3 (Continuity): Let f, g : [0, 1]2 → R be bounded symmetric measurable

functions with positive eigenvalues {λ+r (f), λ+r (g)}∞r=1 and negative eigenvalues
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{λ−r (f), λ−r (g)}∞r=1 both ordered to be decreasing in absolute value. Suppose(∫ ∫
(f(u, v)− g(u, v))2 dudv

)1/2 ≤ ε. Then |λ+i (U)− λ+i (W )| ≤ ε and

|λ−i (U)− λ−i (W )| ≤ ε. See Birman and Solomjak (2012), equation (19) following Theorem

8 in Chapter 9.2.

In Lemma 3 of Appendix Section A.1 in the main text, we use an implication of Lemma B3

and Theorem 368 of Hardy et al. (1952) (Lemma B5 below) that(∑
r∈[R] (λr(f)− λr(g))2

)1/2
≤
√
R
(∫ ∫

(f(u, v)− g(u, v))2 dudv
)1/2

where

{λr(f), λr(g)}r∈[R] are the R largest in absolute value eigenvalues of f and g ordered to be

decreasing. This result is a crude analog of the Hoffman-Wielandt inequality for matrices

(Lemma B6 below).

Lemma B4 (Birkhoff): For every M ∈ D+
n there exists an m ∈ N, α1, ..., αm > 0, and

P1, ..., Pm ∈ Pn such that
∑m

t=1 αt = 1 and Mij =
∑m

t=1 αtPij,t. See Birkhoff (1946).

Lemma B5 (Hardy-Littlewood-Polya Theorem 368): For any m ∈ N and g, h ∈ Rm

we have
∑m

r=1 g(r)h(m−r+1) ≤
∑m

r=1 grhr ≤
∑m

r=1 g(r)h(r) where g(r) is the rth order statistic

of g. See Hardy et al. (1952), Section 10.2, Theorem 368.

Lemma B5 also holds for elements of L2([0, 1]), see Hardy et al. (1952), Section 10.13,

Theorem 378. Specifically, for any g, h ∈ L2([0, 1]) we have∫
g+(u)h+(1− u)du ≤

∫
g(u)h(u)du ≤

∫
g+(u)h+(u)du where g+ is the quantile function of

g. This result is used in the second proof of Theorems 2.1 and 2.5 in Whitt (1976).

Lemma B6 (Hoffman-Wielandt): Let {λr(F )}r∈[n] and {λr(G)}r∈[n] be the eigenvalues

of two n× n real symmetric matrices F and G, ordered to be decreasing. Then∑n
r=1 (λr(F )− λr(G))2 ≤

∑n
i=1

∑n
j=1 (Fij −Gij)

2. See Hoffman and Wielandt (1953).
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C Examples

C.1 Examples of matrix rank invariant policy effects

C.1.1 Information diffusion

This example follows Banerjee et al. (2013); Cruz et al. (2017); Bramoullé and Genicot (2018).

N agents are linked in a social network as described by an N×N symmetric binary adjacency

matrix G. Gij = 1 if agents i and j are linked and Gij = 0 otherwise. Information about

a new product or social program diffuses over the social network in T discrete time periods.

In an initial period 0, one agent receives the relevant piece of information. For periods

t = 1, ..., T , agents who received the information in period t−1, transmit it to their neighbors

in period t. Specifically, if an agent receives the information M times from their neighbors in

period t−1, the number of times they transmit the information to each of their neighbors in

time period t is the sum of M independent Bernoulli(α) trials. The parameter α describes the

probability that an agent will transmit information to their neighbors once they receive it.

The outcome of interest is the expected number of times agent j receives the information

in the T time periods when agent i is initially informed in period 0. Proposition 1 of

Bramoullé and Genicot (2018) implies that it is given by

Yij =
T∑
t=1

αt[Gt]ij.

[Gt]ij =
∑

s1

∑
s2
...
∑

st−1
Gis1Gs1s2 ...Gst−1j is the ijth entry of the tth operator power of G.

Now consider an intervention that increases α, the probability of information transmission

between agents. For example, the intervention may be a new advertisement campaign.

Let α(s) be the transmission probability and Yij(s) the resulting outcome matrix with and

without the campaign as indexed by s ∈ {0, 1}. Then

Yij(s) =
n∑
r=1

(
T∑
t=1

α(s)tλtr

)
φirφjr

where (λr, φr) are the eigenvalue and eigenvector pairs of G. Under certain conditions on
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T and α(1), α(0), the treatment effect is matrix rank invariant in that Yij](1) = g(Yij(0))

where g is the lift of a nondecreasing function. For example, if α(1) > α(0) and T is

taken to infinity then g(x) = α(1)x
α(0)−(α(1)−α(0))x which is increasing in x. More generally, if

α(0) < α(1) <
(
1
T

)1/(T−2)
(for example, α(1), α(0) < .5 and T > 3) then g exists and is non-

decreasing, although to our knowledge it does not have a tractable analytical representation.

C.1.2 Social interaction

This example follows Ballester et al. (2006); Calvó-Armengol et al. (2009). N agents are

linked in a social network as described by an N × N symmetric binary adjacency matrix

G. Gij = 1 if agents i and j are linked and Gij = 0 otherwise. Agents take K real-valued

actions. The kth action of agent i is described by Aik. It may describe, for example, how

much agent i smokes or invests in a risky venture. The utility agent i receives from choosing

action Aik depends on the total amount of the action taken by their peers. Specifically,

Ui(Ak) = ηikAik −
1

2
A2
ik + β

N∑
j=1

GijAjkAik

where ηik ∼iid (0, σ2
k) is an idiosyncratic shock. The parameter β describes the size of the

peer effect. That is, how much agents are influenced by their peers. Under the assumption

that I − βG is invertible, there exists a unique Nash equilibrium

Ak = (I − βG)−1 ηk

where Ak = (A1k, ..., ANk).

The outcome of interest is the correlation of actions between agent pairs. It is given by

Yij = E

[
K∑
k=1

AikAjk

]
=
[
(I − βG)−1 Σ (I − βG)−1

]
ij

where Σij = E[
∑K

k=1 ηikηjk] is a diagonal matrix with Σii =
∑K

k=1 σ
2
k := σ2.

Now consider an intervention that increases β, the peer effect size parameter. For exam-

ple, the intervention may be a school program that better informs students about their peers’
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actions. Let β(s) be the peer effects parameter and Yij(s) the resulting outcome matrix with

and without the program as indexed by s ∈ {0, 1}. Then

Yij(s) =
N∑
r=1

(
σ2

(1− β(s)λr)2

)
φirφjr

where (λr, φr) are the eigenvalue and eigenvector pairs of G. If β(1) > β(0) > 0 then the

treatment effect is matrix rank invariant in that Yij(1) = g(Yij(0)) where g is the matrix

lift of a nondecreasing function. Specifically, g(x) = σ2

(
1− β(1)

β(0)

(
1−

(
σ2

x

))1/2)−2
which

is well defined and nondecreasing for x in the range of outcome matrices Y0 that satisfy the

condition that I − β(0)G is invertible.

C.1.3 Link formation

This example follows Jochmans (2017); Graham (2017); Dzemski (2019). N agents are

linked in a social network as described by an N ×N symmetric binary adjacency matrix G.

Gij = 1 if i and j are linked and Gij = 0 otherwise. The marginal transferable utility agents

i and j receive from forming a link depends on their proximity in a K-dimensional social

characteristic space. Specifically,

Uij(Gij = 1)− Uij(Gij = 0) = αi + αj − β
K∑
k=1

(xik − xjk)2 + ηij

where the fixed effect αi describes agent i’s degree heterogeneity or popularity, xik describes

the kth social characteristic of agent i, and the idiosyncratic error ηij is iid logistic. The

parameter β describes the size of the homophily effect. That is, how much link formation is

influenced by agent proximity in the social characteristic space.

The conditional probability that utility-maximizing agents i and j form a link is

E[Gij] = Λ(αi + αj − β
K∑
k=1

(xik − xjk)2).
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where Λ is the standard logistic distribution function. We define the conditional logit

Yij = Λ−1(E[Gij]) = (αi + β
∑
k

x2ik) + (αj + β
∑
k

x2jk) + 2β
∑
k

xikxjk.

Our outcome of interest is the marginal transferable utility that a pair of agents receive

from forming a connection. To simplify our exposition, we measure this outcome using the

demeaned conditional logit

Ỹij = 2βX̃ij

where Ỹij = Yij− 1
N

∑N
i=1 Yij−

1
N

∑N
j=1 Yij and X̃ij =

∑
k xikxjk−

1
N

∑N
i,k=1 xikxjk−

1
N

∑N
j,k=1 xikxjk.

It is straightforward to extend the logic of this example to the undemeaned conditional logit

along the lines of Section D.2 below.

Now consider an intervention that increases β, the homophily size parameter. For exam-

ple, the intervention may be a technology that decreases the costs of communication between

locations. Let β(s) be the homophily parameter and Ỹij(s) the resulting outcome matrix

with and without the communication technology as indexed by s ∈ {0, 1}. Then

Ỹij(s) =
N∑
r=1

(2β(s)λr)φirφjr

where (λr, φr) are the eigenvalue and eigenvector pairs of X̃. If β(1) > β(0) > 0 then the

treatment effect is matrix rank invariant in the sense of Definition 1 of Section 4.2.2 that

E[Yij](1) = g(E[Yij](0)) where g is the matrix lift of a nondecreasing function. Specifically,

g(x) = β(1)
β(0)

x which is increasing.

C.2 Examples of settings with spillovers, market externalities, etc.

C.2.1 Treatment spillovers

This example follows Bajari et al. (2021). They consider a buyer-seller experiment where

pairs of buyers and sellers are randomly assigned to an information treatment. For example,

the setting may be an online marketplace where a buyer-seller pair is treated if the platform

6



explicitly recommends the seller’s product to the buyer. The outcome of interest Yij is the

size of the transaction between buyer i and seller j. Let Xij = 1 if buyer i and seller j are

assigned to treatment and Xij = 0 otherwise.

Bajari et al. (2021) assume local interference (their Assumption 5.4). That is, the outcome

Yij between buyer i and seller j depends on whether i and j are treated, the number of sellers

l for which i and l are treated, and the number of buyers k for which k and j are treated.

For example, buyer i may be more likely to buy from seller j if the platform recommends

one of seller j’s products, all else equal. Buyer i may be less likely to buy from seller j if the

platform recommends products from seller j’s competitors, all else equal.

Local interference suggests the model

Yij = fij

(
Xij,

∑
l

Xil,
∑
k

Xkj

)
.

Let fij (xb, xs) be the expected outcome for agent pair ij when
∑

lXil = xb and
∑

kXkj = xs

for some xb, xs ∈ Z+, i.e.
∑

t∈{0,1} fij (t, xb, xs)P (Xij = t). In this example, our parameter

of interest is the distribution of treatment spillover effects

1

NM

∑
i∈[N ],j∈[M ]

1{fij
(
x1b , x

1
s

)
− fij

(
x0b , x

0
s

)
≤ y}.

In words, it is the fraction of buyer-seller pairs whose change in outcome, after altering the

number of relevant treated agent pairs for i and j from (x0b , x
0
s) to (x1b , x

1
s) is less than y.

To identify the distribution of treatment spillover effects, we propose the following ex-

periment. First randomly assign the treatment to pairs of buyers and sellers. Then form

two groups. The first group collects all of the buyers that belong to exactly x1b treated

buyer-seller pairs and all of the sellers that belong to exactly x1s treated buyer-seller pairs.

The second group similarly collects all of the buyers and sellers that belong to x0b and x0s

treated pairs. The next step is to use the matrix of outcomes associated with each group

Yt := {fij (Xij, x
t
b, x

t
s)}i,j∈ group t to compute Ȳt := {fij (xtb, x

t
s)}i,j∈ group t. Finally, after sym-

metrization as in Section 5.1, the distribution of spillover effects can be characterized exactly

as in Section 4 of the main text.
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C.2.2 Market externalities

Consider a market economy with N agents and L goods. For a fixed price p ∈ RL−1, agent i’s

demand for the lth good is given by the function Qil(p) with Qi(p) = {Qi1(p), ..., QiL(p)} ∈

RL. Qil may be negative in which case i is a supplier of good l. An equilibrium mar-

ket price p∗(0) is assumed to satisfy the market clearing condition
∑N

i=1Q
∗
i (0) = 0 where

Q∗i (0) = Qi(p
∗(0)) is agent i’s equilibrium demand. Absent any market intervention, the

equilibrium price and quantity (p∗(0), Q∗1(0), ..., Q∗N(0)) is realized.

We are interested in understanding the impact of a market intervention such as a price

floor on the equilibrium demand matrix between agents and goods. An equilibrium market

price p∗(1) is assumed to satisfy the market clearing condition
∑N

i=1Q
∗
i (1) = 0 and restric-

tion p∗(1) ≥ c where Q∗i (1) = Qi(p
∗(1)) is agent i’s equilibrium demand under the price

floor and c ∈ RL−1 is chosen by the policy maker. Under the price floor intervention, the

equilibrium price and quantity (p∗(1), Q∗1(1), ..., Q∗N(1)) is realized (if no equilibrium exists

then we assume that the policy maker allocates the goods in some other deterministic way).

Our interest is in the distribution of treatment effects

1

NL

∑
i∈[N ],l∈[L]

1{Q∗il(1)−Q∗il(0) ≤ y}.

In words, it is the fraction of agent and good pairs whose difference in equilibrium demand

with and without the price ceiling is less than y. There are market externalities in this exam-

ple because while price floor may only nominally restrict one agent or item, the equilibrium

condition implies that implementing the policy may result in changes in the equilibrium

demand matrix for any agent and item.

To identify the distribution of treatment effects with market externalities, we suppose

that the researcher is given data from the following natural experiment. They observe a ma-

trix of equilibrium demand for a population of agents and goods from a region without the

price floor. They observe another matrix of equilibrium demand for a different population

of agents and goods from a region with the price floor. The two regions may not have any

agents or goods in common, but they are assumed to be comparable in the sense of Assump-

tion 1 in Section 3.3 of the main text. For example, the regions may have similar economic
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activity but be under different political jurisdictions. After symmetrization as in Section

5.1, the two outcome matrices can be used to characterize the distribution of equilibrium

treatment effects exactly as in Section 4 of the main text.

C.3 Example where randomization implies Assumption 1

We specify a general large sample strategic network formation model under which random-

izing agents to treatment groups implies Assumption 1 from Section 3.3 of the main text.

Related models are considered, for example, by Leung (2015); Menzel (2015); Ridder and

Sheng (2015); Badev (2017); Mele (2017); Thirkettle (2019). To simplify our exposition and

minimize notation we assume that network formation is deterministic, but the logic of our

model is straightforward to apply to a stochastic model as well.

In words, the model we consider is one where agents make strategic decisions to form

connections and the observed network is in an equilibrium where no pair of agents has an

incentive to alter their relationship status. The equilibrium connections are determined by

exactly two things: the exogenous characteristics of the agents and the policy implemented

by the researcher. By randomly assigning the agents to the treatment groups, the researcher

ensures that that their characteristics are similar to the population of interest. As a result,

the equilibrium connections between the agents in the treatment groups necessarily reveal

how the agents in the population of interest would be connected under the same policy.

Formally, we specify a model of network formation that is defined on any group of agents

indexed by [0, 1]. The size of the group is infinite. Each agent in the group is endowed with

a vector of characteristics described by the measurable function X(·) : [0, 1]→ Rk for some

positive integer k. The agents’ characteristics are exogenous in that they do not vary with

the policy implemented or connections formed between agents in the group. Some or all of

the characteristics may be unobserved by the researcher.

The agents in the group interact and form binary network connections. The marginal

utility U that an agent indexed by u ∈ [0, 1] gets from forming a connection with an agent

indexed by v ∈ [0, 1] depends on the policy implemented in the group t ∈ {0, 1}, the char-

acteristics of any of the agents in the group X(·), and any of the other connections between

9



pairs of agents in the group Yt(·, ·) : [0, 1]2 → R. That is,

U(u, v) = ft((u, v), X(·), Yt(·, ·)).

In words, if agents u and v are not connected in the network (Yt(u, v) = 0) then forming

a connection gives ft((u, v), X(·), Yt(·, ·)) additional utility to agent u. If agents u and v

are connected (Yt(u, v) = 1) then destroying that connection gives −ft((u, v), X(·), Yt(·, ·))

additional utility to agent u.

Our model is agnostic to how the agents actually form their connections in the network.

Instead, we only suppose that whatever the network formation process is, it results in con-

nections that satisfy a particular equilibrium condition: two agents are connected if and

only if both agents receive a positive marginal utility from the connection. That is, Yt(·, ·)

is assumed to be measurable and satisfy the rule

Yt(u, v) = 1{ft((u, v), X(·), Yt(·, ·)) > 0}1{ft((v, u), X(·), Yt(·, ·)) > 0} (1)

for every u, v ∈ [0, 1]. Under this rule, the network is said to be pairwise stable, see originally

Jackson and Wolinsky (1996).1

We make two main assumptions about the equilibrium network connections. These as-

sumptions are strong but typical of the literature on strategic network formation. The first

main assumption is that either (1) has a unique equilibrium or that there is a deterministic

equilibrium selection process. This assumption implies that the equilibrium connections can

be represented by the reduced form equation

Yt(u, v) = gt((u, v), X(·)). (2)

If this condition does not hold, then Assumption 1 may be violated even when agents are

randomized to the treatment groups because the equilibrium connections chosen by the

treatment groups may not be representative of what the population of interest would choose

1The choice of pairwise stability as an equilibrium concept is not necessary for this section. Any other
equilibrium concept would work, subject to the conditions outlined below.
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under the same policy. A researcher could potentially relax this unique equilibrium assump-

tion by finding all of the possible equilibria, characterizing the parameters of interest for

each possibility separately, and then taking the union of the identified sets. This could be

done by having a large number of treatment groups (so that every possible equilibrium is

eventually observed in the experiment), or by choosing a specific parametric form of the

utility function and solving for all of the equilibria analytically.

The second main assumption is a standard continuity condition: gt is continuous in X(·)

for almost every agent pair. That is, for every ε > 0 there exists a δ > 0 such that

supx∈Rk

∣∣∫ 1{X(u) ≤ x}du−
∫
1{X∗(u) ≤ x}du

∣∣ ≤ δ implies that∫ ∫
|gt((u, v), X(·))− gt((u, v), X∗(·))| dudv ≤ ε. In words, this second assumption says that

the existence of a connection between agents u and v in equilibrium is robust to small per-

turbations in the distribution of covariates in the group. If this condition does not hold, then

Assumption 1 may be violated even when agents are randomized to treatment groups because

even though randomization may ensure that the distribution of characteristics in the treat-

ment groups are similar to those in the population of interest, small discrepancies between the

two groups may still result in large differences in the equilibrium connections between agents.

Under our two main assumptions, the equilibrium network connections are determined

by only two factors: the distribution of the characteristics of the agents in the group and

the policy implemented by the researcher. Randomization is a way for the researcher to

ensure that the distribution of the characteristics in the treatment groups matches the

population of interest. Specifically, suppose that the population of interest has a distri-

bution of characteristics given by X∗(·). Then the first main assumption implies that

the equilibrium network connections between agents in the population under policy t is

Y ∗t (u, v) = gt((u, v), X∗(·)). In the experiment, the researcher draws a representative sam-

ple of N agents from the population and randomly assigns them to treatment groups 0

and 1 so that the distribution of characteristics in treatment group t is given by Xt(·).

The policy is implemented in group 1 but not group 0. Agents interact and form equilib-

rium network connections given by the function Yt. Then by the Glivenko-Cantelli The-

orem, supx∈Rk

∣∣∫ 1{Xt(u) ≤ x}du−
∫
1{X∗(u) ≤ x}du

∣∣ = op (1) for t ∈ {0, 1}. It follows

from the second main assumption that Y1(u, v) = g1((u, v), X∗(·)) = Y ∗1 (u, v) + op(1) and
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Y0(u, v) = g0((u, v), X∗(·)) = Y ∗0 (u, v) + op(1) for almost every u, v. As a result, in large

samples, Yt and Y ∗t must have the same homomorphism densities as in Section 3.3 of the

main text. Assumption 1 follows.

D Extensions

D.1 Asymmetric outcome matrices

Asymmetric matrices or matrices indexed by two different populations are handled in the

following way. A population of workers and firms are randomized (or as good as randomized)

to a treatment (t = 1) and control (t = 0) group. A policy is implemented in only one of

the groups. For example, the groups may correspond to economic regions where one region

is exposed to a trade shock (the policy) and the other is not (the status quo).

Potential outcomes are defined for each worker and firm pair. We index the workers

with [0, 1] and firms with [2, 3]. These index sets are arbitrary and only used to dif-

ferentiate between the two types of agents. The potential outcomes are represented by

(Y ∗0 , Y
∗
1 ) : S → R2 where S = [0, 1] × [2, 3]. For example, Y ∗1 (u, v) may describe the

potential wage that a worker with index u would earn at a firm with index v when ex-

posed to the trade shock. Following Assumption 1, we assume that the researcher ob-

serves Y1 and Y0 where Yt(ϕt(u), ψt(v)) = Y ∗t (ϕ̃t(u), ψ̃t(v)) for unknown φt, ϕ̃t, ψt, ψ̃t ∈ M.

The DPO is F (y1, y0) =
∫ ∫ ∏

t∈{0,1} 1{Yt(φt(u), ψt(v)) ≤ yt}dudv and the DTE is ∆(y) =∫ ∫
1{Y1(φ1(u), ψ1(v))− Y0(φ0(u), ψ0(v)) ≤ y}dudv.

We symmetrize the potential outcome matrices along the lines of Auerbach (2022b). Let

S2 = ([0, 1] ∪ [2, 3])× ([0, 1] ∪ [2, 3]) and define (Y †0 , Y
†
1 ) : S2 → R2 so that

Y †t (u, v) :=


Yt(u, v) if (u, v) ∈ [0, 1]× [2, 3]

Yt(v, u) if (u, v) ∈ [2, 3]× [0, 1]

∞ otherwise

and ϕt(u) := φt(u)1{u ∈ [0, 1]} + ψt(u)1{u ∈ [2, 3]} is measure preserving. Then the DPO
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is equal to 1
2

∫ ∫ ∏
t∈{0,1} 1{Y

†
t (ϕt(u), ϕt(v)) ≤ yt}dudv. Since Y † is symmetric and defined

on one population (the population of workers and firms), the logic of Sections 3-4 can be

applied to bound the DPO and DTE. One can similarly define the STE using the eigenvalues

of Y †t , although in that case we substitute 0 for ∞ in the definition of Y †t .

D.2 Row and column heteroskedasticity

While the bounds from Section 4 are valid for any symmetric outcome matrices, they may

be uninformative when there is nontrivial heterogeneity in the row and column variances.

In such cases, we propose an adjustment building on Section 5 of Finke et al. (1987). Let

1{Y ∗t (u, v) ≤ yt} = αt(u) + αt(v) + εt(u, v) where
∫
εt(s, v)ds =

∫
εt(u, s)ds = 0 for every

u, v ∈ [0, 1].

D.2.1 Bounds on the DPO and DTE

The DPO becomes

F (y1, y0) =

∫ ∫ ∏
t∈{0,1}

(αt(ϕt(u)) + αt(ϕt(v)) + εt(ϕt(u), ϕt(v))) dudv

=

∫ ∫ ∏
t∈{0,1}

(αt(ϕt(u)) + αt(ϕt(v))) dudv +

∫ ∫ ∏
t∈{0,1}

εt(ϕt(u), ϕt(v))dudv.

We bound the two summands separately. Specifically, the upper bound is

F (y1, y0) ≤ max
ϕ1,ϕ0∈M

∫ ∫ ∏
t∈{0,1}

(αt(ϕt(u)) + αt(ϕt(v))) dudv +

∫ ∫ ∏
t∈{0,1}

εt(ϕt(u), ϕt(v))dudv


≤ max

ϕ1,ϕ0∈M

∫ ∫ ∏
t∈{0,1}

(αt(ϕt(u)) + αt(ϕt(v))) dudv

+ max
ϕ1,ϕ0∈M

∫ ∫ ∏
t∈{0,1}

εt(ϕt(u), ϕt(v))dudv

 .
The first summand is bounded from above by

2 max
ϕ1,ϕ0∈M

[∫
α1(ϕ1(u))α0(ϕ0(u))du

]
+ 2α1α0 ≤ 2

∫
α+
1 (u)α+

0 (u)du+ 2α1α0

where αt =
∫
αt(u)du and α+

t is the quantile function of αt. See Theorem 378 of Hardy et

13



al. (1952) or the second proof of Theorems 2.1 and 2.5 of Whitt (1976) for details. Following

Proposition 2 of the main text, the second summand is bounded from above by

min

(∑
r

λ2r1,
∑
r

λ2r0,
∑
r

λr1λr0

)

where λrt refers to the rth eigenvalue of εt and the sums are defined as in Section 4.1.2 of

the main text. Together, the bounds imply that

F (y1, y0) ≤ 2

∫
α+
1 (u)α+

0 (u)du+ 2α1α0 + min

(∑
r

λ2r1,
∑
r

λ2r0,
∑
r

λr1λr0

)
.

By the same logic, the lower bound on the DPO is

F (y1, y0) ≥ 2

∫
α+
1 (u)α+

0 (1− u)du+ 2α1α0 + max

(∑
r

(
λ2r1 + λ2r0

)
− 1,

∑
r

λr1λs(r)0, 0

)
.

Bounds on the DTE can be constructed from those on the DPO following the logic of

Proposition 3 in Section 4 of the main text.

D.2.2 Spectral treatment effects

We suppose the rank invariance assumptions α1(ϕ1(u)) = gα(α0(ϕ0(u)) and ε1(ϕ1(u), ϕ1(v)) =

gε(ε0(ϕ0(u), ϕ0(v)) for every u, v ∈ [0, 1] where gα is a nondecreasing function and gε is the

matrix lift of a nondecreasing function as in Definition 1 of Section 4.2.2. Define the spectral

treatment effect with row and column heterogeneity to be

STE(u, v;φ) =
(
α+
1 (u)− α+

0 (u)
)

+
(
α+
1 (v)− α+

0 (v)
)

+
∑
r

(σr1 − σr0)φr(u)φr(v)

where {φr} is any orthogonal basis in L2([0, 1]) and {σrt} are the eigenvalues of εt. Similarly

define STT (u, v) = STE(u, v;φ1) and STU(u, v) = STE(u, v;φ0) where φ1 and φ0 refer to

the eigenfunctions of ε1 and ε0 respectively.

14



Then by the logic of Proposition 5 in Section 4 of the main text

Y ∗1 (u, v)− Y ∗0 (u, v) = (α1(ϕ1(u))− α0(ϕ0(u))) + (α1(ϕ1(v))− α0(ϕ0(v)))

+ (ε1(ϕ1(u), ϕ1(v))− ε0(ϕ0(u), ϕ0(v)))

= (gα(α0(ϕ0(u)))− α0(ϕ0(u))) + (gα(α0(ϕ0(v)))− α0(ϕ0(v))

+ (gε(ε0(ϕ0(u), ϕ0(v)))− ε0(ϕ0(u), ϕ0(v)))

= (gα(α0(ϕ0(u)))− α0(ϕ0(u))) + (gα(α0(ϕ0(v)))− α0(ϕ0(v))

+
∑
r

(gε(σr0)− σr0)φr0(ϕ0(u))φr0(ϕ0(v))

= STE(ϕ0(u), ϕ0(v);φ0))

Since ε1 and ε0 are matrix rank invariant, they have the same eigenfunctions (see the proof

of Proposition 5 in Section A.5), and so STE(ϕ0(u), ϕ0(v);φ0)) = STE(ϕ0(u), ϕ0(v);φ1)).

It follows that under the rank invariance assumption Y ∗1 − Y ∗0 , STT , and STU all have the

same marginal distribution function.

D.3 Randomization inference

The focus of our paper is on identification, but for completeness we give two examples show-

ing how one can conduct randomization based inference about the disruptive impact of a

policy. We focus on the global point null of no treatment effect, take the populations to be

finite and the potential outcomes to be fixed, and do not explicitly consider network inter-

ference. One can, however, similarly consider infinite populations, test other hypotheses, or

invert the tests to construct point estimates and confidence intervals in the sense of Hodges

and Lehmann (2012); Rosenbaum (2002), see also Athey et al. (2018); Basse et al. (2019a;b).

D.3.1 Double randomization with uncensored outcomes

This example is based on the conjunctive simple multiple randomization design of Bajari et

al. (2021). A group of B buyers and S sellers are independently randomized to one of two

groups. The probability that any buyer or seller is assigned to group 1 is π ∈ (0, 1). Every
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buyer-seller pair where both the buyer and the seller of that pair are assigned to group 1 is

given an information treatment.

Let Yij,st be the potential transaction between buyer i and seller j in the event that i is

assigned to group s ∈ {0, 1} and j is assigned to group t ∈ {0, 1}. Ỹij is the observed trans-

action for buyer i and seller j under their realized group assignments. We call this example

uncensored because the researcher observes some transaction value for every pair of agents in

the experiment (that value may be 0). To simplify arguments, we assume that the potential

transactions for a buyer-seller pair do not depend on exactly which other buyers or sellers are

assigned to groups 1 and 2. This corresponds to the authors’ Assumption 5.1 and may be the

case when the number of buyers and sellers assigned to each group is large as in Section C.3.

The null hypothesis is that the information treatment is not disruptive. That is, it has no

effect on the potential transactions between buyers and sellers in the marketplace. That is,

H0 : Yij,st = Yij,s′t′ for every i ∈ [B], j ∈ [S], s, s′, t, t′ ∈ {0, 1}.

For a test statistic, we propose the difference in the eigenvalues of the outcome matrices

associated with each treatment

T = max
s,s′,t,t′∈{1,2}

sup
y∈R

∑
r

(λr,st(y)− λr,s′t′(y))2 .

where λr,st(y) is the rth eigenvalue of {1{Ỹ †ij ≤ y}/Nst}i,j∈B(s)∪S(t), B(s) = {i ∈ B :

i is assigned to group s} and S(t) = {j ∈ S : i is assigned to group t}, and Nst = |B(s)| +

|S(t)|. The logic of this test statistic follows Proposition 4 of the main text. It is a conser-

vative measure of the total amount of disruption caused by a change in policy.

For a reference distribution, we rerandomize the individual treatment assignments. For

any positive integer A and a ∈ [A], let ρBi,a and ρSj,a be a collection of independent Bernoulli(π)

random variables, Ba(s) = {i ∈ B : ρBi,a = s} and Sa(t) = {j ∈ S : ρSj,a = t} be the set of

buyers and sellers rerandomized to group s and t respectively,

Ỹ a
st = {Ỹij}i∈Ba(s),j∈Sa(t)

16



and

T a = max
s,s′,t,t′∈{1,2}

sup
y∈R

∑
r

(
λar,st(y)− λar,s′t′(y)

)2
where λar,st(y) is the rth eigenvalue of 1{Ỹ a†

st ≤ y}/Ña
st and Ña

st = |Ba(s)|+ |Sa(t)|.

By Lehmann and Romano (2006) Theorem 15.2.1, the test that rejects H0 whenever

(A+ 1)−1

1 +
∑
a∈[A]

1{T a ≥ T}

 ≤ α

is level α. It is powered to detect deviations in the eigenvalues of the transaction matrices as-

sociated with each treatment. That such deviations detect a large class of socially disruptive

policy effects follows Propositions 3-4 in the main text.

D.3.2 Double randomization with censored outcomes

This example is based on Comola and Prina (2021). A collection of households are ran-

domly chosen to participate in a savings program. Each household is assigned to participate

independently with probability π ∈ (0, 1).

Let Yij,t be the potential risk sharing link for households i and j when both (t = 1) or

neither (t = 0) participate in the program. Ỹij,t is the observed risk sharing link for house-

holds i and j that were actually assigned to treatment t. Ñt is the number of households

actually assigned to treatment t. We call this example censored because in this example the

researcher only observes the potential risk sharing links for pairs of agents assigned to the

same treatment. To simplify our exposition, we assume that the number of participants is

small relative to the number of non-participants (i.e. π ≈ 0).

The null hypothesis is that participation in the savings program has no effect on the

potential risk sharing links between pairs of households. That is,

H0 : Yij,t = Yij,t′ for every t, t′ ∈ {0, 1}.

For a test statistic, we propose the difference in the eigenvalues of the outcome matrices
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associated with the treated and untreated household pairs

T = sup
y∈R

∑
r

(λr,1(y)− λr,0(y))2

where λr,t(y) is the rth eigenvalue of 1{Ỹt ≤ y}/Ñt. As in the previous example, the logic

of this test statistic follows from Proposition 4 of the main text.

For a reference distribution, we rererandomize the individual treatment assignments. For

any positive integer A and a ∈ [A], let ρi,a be a collection of independent Bernoulli(π) random

variables,

Ỹ a
1 = {Yij,0}ρi,a=1,ρj,a=1,

and

T a = sup
y∈R

∑
r

(
λar,1(y)− λr,0(y)

)2
where λar,1 is the rth eigenvalue of 1{Ỹ a

1 ≤ y}/Ña
1 and Ñ1 is the number of households

rerandomized to treatment 1.

By Lehmann and Romano (2006) Theorem 15.2.1, the test that rejects H0 whenever

(A+ 1)−1

1 +
∑
a∈[A]

1{T a ≥ T}

 ≤ α

is level α. It is powered to detect deviations in the eigenvalues of the networks associated

with each treatment. That such deviations detect a large class of socially disruptive policy

effects follows Proposition 2 in the main text.

D.4 Large sample estimation and inference

The focus of our paper is on identification, but for completeness we also show how one can

estimate and conduct inference about the bounds on the DPO, DTE, and the distribution

of STE using sampled, mismeasured, or missing data.
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The data is assumed to be drawn from an infinite population. Our estimators use kernel

density smoothing along the lines of Horowitz (1992). Alternative strategies may lead to

more accurate inferences in practice, but we leave their study to future work.

D.4.1 Assumptions about the data generating process

We consider the setting of Section 3 in the main text, except the researcher does not observe

the network connections in the treatment groups Yt : [0, 1]2 → R for t ∈ {0, 1}. Instead,

they have a stochastic approximation Ŷt : [0, 1]2 → R whose accuracy depends on a sample

size. We give more information about the assumed relationship between Ŷt and Yt below.

For example, the researcher may observe the N ×N matrix Mt with ijth entry Mij,t =

(Yt(wi,t, wj,t) + εij,t) ηij,t. N agents are sampled from the infinite population as described by

wi,t ∼iid Fw. The connections between pairs of agents are observed with measurement error

as described by εij,t ∼iid Fε. Some outcomes are missing at random as described by ηij,t ∼iid
Bernoulli(pt) with pt ∈ (0, 1). To construct Ŷt, the researcher first estimates the entries of

Yt(wi,t, wj,t) conditional on {wi,t}i,∈[N ]. This may be done by local averaging, k-means clus-

tering, linear regression, PCA, spectral thresholding, etc. See for instance Bai et al. (2008);

Bonhomme and Manresa (2015); Chatterjee (2015); Stock and Watson (2016); Jochmans and

Weidner (2019); Graham (2020). Ŷt is then the function embedding (see Appendix Section

A.1.1) of this matrix of estimates, potentially weighted by the inverse density of wi,t.

To demonstrate consistency of our estimators (specified below), our main assumption is

that Ŷt is consistent in mean squared error. That is,

Assumption D1:

MSE(Ŷ ) := max
t∈{0,1}

∫ ∫ (
Ŷt(u, v)− Yt(u, v)

)2
dudv →p 0 as N →∞.

Nearly all of the methods proposed in the literature are designed to satisfy this property

under certain regularity conditions. We show that under Assumption 1 and additional reg-

ularity conditions, the mean squared error of our estimators vanishes with MSE(Ŷt). It

follows that our estimators are consistent under Assumption D1.
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To construct a distribution for large sample inference, our main assumption is that Yt is

determined by a linear model. Specifically,

Assumption D2: For t ∈ {0, 1}, Yt(u, v) = Xt(u, v)βt and Ŷt(u, v) = Xt(u, v)β̂t with

βt, β̂t ∈ RK for some K ∈ N,
(
β̂t − βt

)
→d N (0, Vt) as N →∞ for some covariates

Xt(u, v), Vt can be consistently estimated, and β̂1 and β̂0 have independent entries.

Linear models are common in network economics, see for instance Bonhomme and Manresa

(2015); Jochmans and Weidner (2019); Auerbach (2022a). We suspect that it is straightfor-

ward to extend the arguments of this section to nonlinear or nonparametric models in the

usual way, but we do not have space in this online appendix to demonstrate additional results.

D.4.2 Additional regularity conditions

We rely on the following regularity conditions. They are analogous to Assumptions K1, K2,

6, and 9 in Horowitz (1992), but modified to fit our setting.

Assumption D3:

i K : R→ R is everywhere twice differentiable with |K|, |K ′|, and |K ′′| uniformly

bounded, limu→∞K(u) = 0 and limu→−∞K(u) = 1.
∫

[K ′(u)]4 du,
∫

[K ′′(u)]2 du, and∫
[u2K ′′(u)]

4
du are finite. For some P ∈ N, P ≥ 2 and p ∈ [P ]

∫
|upK ′(u)|du is also

finite with
∫
upK ′(u)du = 0.

ii h(N) is a bandwidth sequence such that h→ 0, hp−P−1
∫
|hu|>η |u

pK ′(u)|du→ 0,

h−1
∫
|hu|>η |K

′′(u)|du→ 0, and h−PMSE(Ŷ )→∞ as N →∞ for any η > 0 and

p ∈ [P ].

iii The marginal distribution function of the STE parameter,

FSTE(y;φ) =
∫ ∫

1{STE(u, v;φ) ≤ y}dudv, is everywhere smooth with uniformly

bounded derivatives for a fixed orthogonal basis {φr} of L2([0, 1]).

Assumption D4:
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i K : R→ R is everywhere twice differentiable with |K|, |K ′|, and |K ′′| uniformly

bounded, limu→∞K(u) = 0, K(0) = 1, and limu→−∞K(u) = 1.
∫

[K ′(u)]4 du,∫
[K ′′(u)]2 du, and

∫
[u2K ′′(u)]

4
du are finite. For some P ∈ N, P ≥ 2 and p ∈ [P ],∫

|upK ′(u)|du is also finite with
∫
u≤0 u

pK ′(u)du =
∫
upK(u)K ′(u)du = 0 for p ∈ [P ].

ii h(N) is a bandwidth sequence such that h→ 0, hp−P−1
∫
|hu|>η |u

pK ′(u)|du→ 0,

h−1
∫
|hu|>η |K

′′(u)|du→ 0, and h−PMSE(Ŷ )2 →∞ as N →∞ for any η > 0 and

p ∈ [P ].

iii The marginal distribution function of the STE parameter,

FSTE(y;φ) =
∫ ∫

1{STE(u, v;φ) ≤ y}dudv, is everywhere smooth with uniformly

bounded derivatives for a fixed orthogonal basis {φr} of L2([0, 1]).

A consequence of Assumption D4(i) is that 2
∫
K(u)K ′(u)du = −1 and

∫
u≤0K

′(u) = 0.

D.4.3 Consistent estimation of the bounds on the DPO and DTE

Let {λrt}r∈[R] and {λ̂rt}r∈[R] denote the R largest eigenvalues in absolute value of the func-

tions 1{Yt(·, ·) ≤ yt} and K
((
Ŷt(·, ·)− yt

)
/h
)

, ordered to be decreasing. To estimate

the bounds on the DPO and DTE, we propose
∑

r∈N λ̂rtλ̂rt′ to estimate
∑

r∈N λrtλrt′ for

t, t′ ∈ {0, 1}. We show that

Proposition D1: Under Assumptions D1 and D4

sup
yt,yt′∈R

∣∣∣∣∣∑
r∈N

λ̂rtλ̂rt′ −
∑
r∈N

λrtλrt′

∣∣∣∣∣ = Op

(
MSE

(
Ŷ
))

.

Proof of Proposition D1: Write∣∣∣∣∣∑
r∈N

λ̂rtλ̂rt′ −
∑
r∈N

λrtλrt′

∣∣∣∣∣ ≤
∣∣∣∣∣∑
r∈N

(
λ̂rt − λrt

)
λrt′

∣∣∣∣∣+

∣∣∣∣∣∑
r∈N

(
λ̂rt′ − λrt′

)
λrt

∣∣∣∣∣+ rN

where rN =
∣∣∣∑r∈N

(
λ̂rt − λrt

)(
λ̂rt′ − λrt′

)∣∣∣ is asymptotically negligible relative to the first
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two terms. The first two summands are bounded∣∣∣∣∣∑
r

(
λ̂rt − λrt

)
λrt′

∣∣∣∣∣ ≤
[∑

r

(
λ̂rt − λrt

)2]1/2
Ft′(yt′)

1/2

by Cauchy-Schwarz since (
∑

r λ
2
rt)

1/2
= Ft(yt)

1/2. The term

[∑
r

(
λ̂rt − λrt

)2]1/2
is further

bounded

[∑
r

(
λ̂rt − λrt

)2]1/2
≤

∫ ∫ (K ( Ŷt(u, v)− yt
h

)
− 1{Yt(u, v) ≤ yt}

)2

dudv

1/2

≤

∫ ∫ (K ( Ŷt(u, v)− yt
h

)
−K

(
Yt(u, v)

h

))2

dudv

1/2

+

[∫ ∫ (
K

(
Yt(u, v)− yt

h

)
− 1{Yt(u, v) ≤ yt}

)2

dudv

]1/2
.

We show that Assumption D4 implies that the second summand is op

(
h

P
2

)
in Section

D.3.6, Lemma D1 below, see also Horowitz (1992), Lemma 5. The first summand is

Op

(
MSE

(
Ŷ
))

because

∫ ∫ (K ( Ŷt(u, v)− yt
h

)
−K

(
Yt(u, v)− yt

h

))2

dudv

1/2

=

∫ ∫ (K ′(Yt(u, v)− yt
h

)[
Ŷt(u, v)− Yt(u, v)

h

])2

dudv

1/2

+ sN

where sN is asymptotically negligible since K is differentiable. The claim follows since P is

chosen in Assumption D4 so that hP/2 is op

(
MSE

(
Ŷ
))

. �
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D.4.4 Inference on the bounds on the DPO and DTE

Proposition D2: Under Assumptions D1, D2, and D4

P

(∣∣∣∣∣∑
r∈N

λ̂rtλ̂rt′ −
∑
r∈N

λrtλrt′

∣∣∣∣∣ > ε

)
≤ P

(
(ξ′tAtξt)

1/2
Ft′(yt′)

1/2 + (ξ′t′At′ξt′)
1/2
Ft(yt)

1/2 > ε
)

+ op(1)

where At = V
1/2
t ΩtV

1/2
t , Ωt =

∫ ∫
1
h2
K ′
(
Yt(u,v)−yt

h

)2
Xt(u, v)′Xt(u, v)dudv, and

(ξ1, ξ0) ∼ N
(
0, Idim(β1)+dim(β0)

)
.

Proof of Proposition D2: From the proof of Proposition D1 in Section D.3.3, Assumptions

D1 and D3 imply that

∣∣∣∣∣∑
r∈N

λ̂rtλ̂rt′ −
∑
r∈N

λrtλrt′

∣∣∣∣∣ ≤
∫ ∫ (K ′(Yt(u, v)− yt

h

)[
Ŷt(u, v)− Yt(u, v)

h

])2

dudv

1/2

Ft′(yt′)
1/2

+

∫ ∫ (K ′(Yt′(u, v)− yt′
h

)[
Ŷt′(u, v)− Yt′(u, v)

h

])2

dudv

1/2

Ft(yt)
1/2 + op(1).

The claim then follows from Assumption D2, since

∫ ∫ (
K ′
(
Yt(u, v)− yt

h

)[
Ŷt(u, v)− Yt(u, v)

h

])2

dudv

=
(
β̂t − βt

)′ [∫ ∫ 1

h2
K ′
(
Yt(u, v)− yt

h

)2

Xt(u, v)′Xt(u, v)dudv

](
β̂t − βt

)
→d ξ

′
tAtξt. �

Once can make inferences about
∑

r∈N λrtλrt′ and the bounds on the DPO and DTE in

practice by replacing At with the estimator Â = V̂
1/2′

t Ω̂tV̂
1/2
t where V̂t is a consistent esti-

mator of Vt, Ω̂t =
∫ ∫

1
h2
K ′
(
Ŷt(u,v)−yt

h

)2
Xt(u, v)′Xt(u, v)dudv, and F̂t(yt) =

∫ ∫
1{Ŷt(u, v) ≤

yt}dudv. One can use the right-hand side to construct critical values or confidence inter-

vals in the usual way. Replacing 1
h2
K ′
(
Ŷt(u,v)−yt

h

)2
with supx | 1h2K

′ (x
h

)2 | and F̂t′(yt′) with 1

allows for inferences that are uniformly valid over yt, yt′ ∈ R.
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D.4.5 Consistent estimation of the distribution of spectral treatment effects

Let {σrt}r∈[R] and {σ̂rt}r∈[R] denote theR largest eigenvalues of Yt and Ŷt in absolute value, or-

dered to be decreasing. We propose the estimator ˆSTE(u, v;φ) :=
∑

r∈[R] (σ̂r1 − σ̂r0)φr(u)φr(v)

for STE(u, v;φ) =
∑

r∈[R] (σr1 − σr0)φr(u)φr(v) and
∫ ∫

K
(

ˆSTE(u,v;φ)−y
h

)
dudv for its marginal

FSTE(y;φ) :=
∫ ∫

1{STE(u, v;φ) ≤ y}.

Proposition D3: Under Assumptions D1 and D3

sup
y∈R

∣∣∣∣∣
∫ ∫

K

(
ˆSTE(u, v;φ)− y

h

)
dudv −

∫ ∫
1{STE(u, v;φ) ≤ y}dudv

∣∣∣∣∣ = op (1) .

Proof of Proposition D3: Write∣∣∣∣∣
∫ ∫

K

(
ˆSTE(u, v;φ)− y

h

)
dudv −

∫ ∫
1{STE(u, v;φ) ≤ y}dudv

∣∣∣∣∣
≤

∣∣∣∣∣
∫ ∫

K

(
ˆSTE(u, v;φ)− y

h

)
dudv −

∫ ∫
K

(
STE(u, v;φ)− y

h

)
dudv

∣∣∣∣∣
+

∣∣∣∣∫ ∫ K

(
STE(u, v;φ)− y

h

)
dudv −

∫ ∫
1{STE(u, v;φ) ≤ y}dudv

∣∣∣∣ .
We show that Assumption D3 implies that the second summand is op

(
hP
)

in Section D.3.6

below, see also Horowitz (1992)’s Lemma 5. The first summand is op (1) because∣∣∣∣∣
∫ ∫

K ′
(
STE(u, v;φ)− y

h

)[ ˆSTE(u, v;φ)− STE(u, v;φ)

h

]
dudv

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
r∈[R]

((σ̂r1 − σ̂r0)− (σr1 − σr0))Wr

∣∣∣∣∣∣ ≤
 ∑
s∈{0,1}

||Ŷs − Ys||2

∑
r∈[R]

W 2
r

1/2

plus an asymptotically negligible term, where Wr =
∫ ∫

1
h
K ′
(
STE(u,v;φ)−y

h

)
φr(u)φr(v)dudv

and
∑

rW
2
r is finite because K ′ is square integrable by assumption. The claim follows since

hP → 0 by Assumption D3. �
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D.4.6 Inference on the distribution of spectral treatment effects

Proposition D4: Under Assumptions D1-D3

P

(∣∣∣∣∣
∫ ∫

K

(
ˆSTE(u, v;φ)− y

h

)
dudv −

∫ ∫
1{STE(u, v;φ) ≤ y}dudv

∣∣∣∣∣ > ε

)

≤ P

[(ξ′1B1ξ1)
1/2

+ (ξ′0B0ξ0)
1/2
](∑

r

W 2
r

)1/2

> ε


where Wr =

∫ ∫
1
h
K ′
(
STE(u,v;φ)−y

h

)
φr(u)φr(v)dudv,

Bt = V
1/2
t

[∫ ∫
Xt(u, v)′Xt(u, v)dudv

]
V

1/2
t , and (ξ1 ξ0)→ N

(
0, Idim(β1)+dim(β0)

)
.

Proof of Proposition D4: From the proof of Proposition D3 in Section D.3.5, Assumptions

D1 and D3 imply that∣∣∣∣∣
∫ ∫

K

(
ˆSTE(u, v;φ)− y

h

)
dudv −

∫ ∫
1{STE(u, v;φ) ≤ y}dudv

∣∣∣∣∣
≤

 ∑
s∈{0,1}

||Ŷs − Ys||2

∑
r∈[R]

W 2
r

1/2

+ op

(
MSE

(
Ŷ
))

.

The claim then follows from Assumption D2, since

∫ ∫ (
Ŷt(u, v)− Yt(u, v)

)2
dudv =

(
β̂t − βt

)′ [∫ ∫
Xt(u, v)′Xt(u, v)

](
β̂t − βt

)
→d ξ

′
tBtξt. �

One can make inferences about
∫ ∫

1{STE(u, v;φ) ≤ y}dudv in practice by replac-

ing Wr with the estimator Ŵr = 1
h

∫ ∫
K ′
(

ˆSTE(u,v;φ)−y
h

)
φr(u)φr(v)dudv and Bt with B̂t =

V̂
1/2
t

[∫ ∫
Xt(u, v)′Xt(u, v)dudv

]
V̂

1/2
t . One can use the right-hand side to construct critical

values or confidence intervals in the usual way.
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D.4.7 Additional lemmas

Lemma D1: Under Assumption D4,[∫ ∫ (
K

(
Yt(u, v)− yt

h

)
− 1{Yt(u, v) ≤ yt}

)2

dudv

]
= op

(
hP
)
.

Proof of Lemma D1: Write

∫ ∫ (
K

(
Yt(u, v)− yt

h

)
− 1{Yt(u, v) ≤ yt}

)2

dudv

=

∫ ∫
K

(
Yt(u, v)− yt

h

)2

dudv + Ft(yt)− 2

∫ ∫
K

(
Yt(u, v)− yt

h

)
1{Yt(u, v) ≤ yt}dudv.

The first summand

∫ ∫
K

(
Yt(u, v)− yt

h

)2

dudv = −2

∫
K(τ)K ′(τ)Ft(yt + hτ)dτ

= −2

∫
K(τ)K ′(τ)

[
Ft(yt) + ft(yt)hτ + ...+

1

P !
fPt (yt)h

P τP + op
(
hP
)]
dτ

= Ft(yt) + op
(
hP
)

where the first equality is due to a change in variables and integration by parts, the second

equality is Taylor’s Theorem, and the last equality is by the choice of K in Assumption D4:

2
∫
K(τ)K ′(τ)dτ = −1 and

∫
K(τ)K ′(τ)τ pdτ = 0 for p ∈ [P ].

Similarly, the third summand

∫ ∫
K

(
Yt(u, v)− yt

h

)
1{Yt(u, v) ≤ yt}dudv =

∫
K ′(τ)1{τ ≤ 0}Ft(yt + hτ)dτ

=

∫
K ′(τ)1{τ ≤ 0}

[
Ft(yt) + ft(yt)hτ + ...+

1

P !
fPt (yt)h

P τP + op
(
hP
)]
dτ

= op
(
hP
)

where the last equality is also by the choice of K in Assumption D4:
∫
τ≤0K

′(τ)τPdτ = 0

for p = 0 and p ∈ [P ]. The claim follows. �
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Lemma D2: Under Assumption D3,∣∣∣∣∫ ∫ K

(
STE(u, v;φ)− y

h

)
dudv −

∫ ∫
1{STE(u, v;φ) ≤ y}dudv

∣∣∣∣ = op
(
hP
)
.

Proof of Lemma D2: Write

∫ ∫
K

(
STE(u, v;φ)− y

h

)
dudv =

∫
K ′(τ)Ft(yt + hτ)dτ

=

∫
K ′(τ)

[
Ft(yt) + ft(yt)hτ + ...+

1

P !
fPt (yt)h

P τP + op
(
hP
)]
dτ

= Ft(yt) + op
(
hP
)

where the first equality is due to a change in variables and integration by parts, the second

equality is Taylor’s Theorem, and the last equality is by the choice of K in Assumption D3:∫
K ′(τ)dτ = −1 and

∫
K ′(τ)τ pdτ = 0 for p ∈ [P ]. �
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