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Abstract

This paper studies the properties of linear regression on centrality measures when net-
work data is sparse – that is, when there are many more agents than links per agent –
and when they are measured with error. We make three contributions in this setting:
(1) We show that OLS estimators can become inconsistent under sparsity and charac-
terize the threshold at which this occurs, with and without measurement error. This
threshold depends on the centrality measure used. Specifically, regression on eigenvec-
tor is less robust to sparsity than on degree and diffusion. (2) We develop distributional
theory for OLS estimators under measurement error and sparsity, finding that OLS es-
timators are subject to asymptotic bias even when they are consistent. Moreover, bias
can be large relative to their variances, so that bias correction is necessary for infer-
ence. (3) We propose novel bias correction and inference methods for OLS with sparse
noisy networks. Simulation evidence suggests that our theory and methods perform
well, particularly in settings where the usual OLS estimators and heteroskedasticity-
consistent/robust t-tests are deficient. Finally, we demonstrate the utility of our results
in an application inspired by De Weerdt and Dercon (2006), in which we study the
relationship between consumption smoothing and informal insurance in Nyakatoke,
Tanzania.
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1 Introduction

A large and rapidly growing body of work documents the influence of networks in a wide

range of economic outcomes: peer effects drive academic achievement, production networks

shape shock propagation in the macroeconomy, social networks affect information- and risk-

sharing with important implications for development (see Sacerdote 2011, Carvalho and

Tahbaz-Salehi 2019 and Breza et al. 2019 for recent reviews). Many other examples abound.

One particular strand of research has explored the relationship between an agent’s net-

work position and their economic outcomes. For example, Hochberg et al. (2007) considers

the network of venture capital firms and finds that better-networked firms successfully exit

a greater proportion of their investments. Meanwhile, Cruz et al. (2017) examines the social

networks in the Philippines and shows that more central families are disproportionately rep-

resented in political offices. Similarly, Banerjee et al. (2013) studies the problem of diffusing

microfinance in India and establishes that seeding information to more central agents led to

greater participation in the program.

In these papers, researchers often estimate linear models by ordinary least squares (OLS),

using centrality measures as explanatory variables. Centrality measures are node-level statis-

tics that capture notions of importance in a network. Since nodes can be important for many

reasons, a variety of centrality measures exist, each capturing a particular aspect of network

position. For example, the degree centrality of an agent reflects the number or intensity

of their direct links, while eigenvector centrality is designed so that the influence of agents

is proportional to that of their connections. The correlation between an outcome variable

and a particular centrality measure may be revealing about the types of interactions that

drive a given economic phenomenon: an outcome that is well-predicted solely by degree is

likely to be determined in an extremely local manner, whereas one that is more strongly

associated with eigenvector centrality may involve non-linear interactions between agents

that are further apart. As such, when researchers estimate these correlations and test their

statistical significance, they frequently do so with the goal of drawing conclusions about the

economic significance of various centrality measures and the implied mechanisms for out-

come determination. Such an exercise is credible only if the OLS estimator is close to the

estimand, and if the chosen test statistic (typically the heteroskedasticity-consistent/robust

t-statistics) is well described by its asymptotic distribution (standard normal for t-statistics)

in finite sample.

However, network data have two features that may threaten the statistical validity of

OLS. First, networks may be sparse, with many more agents than links per agent. This could

happen because interactions are observed with low frequency, or because the interactions in
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question are rare. Chandrasekhar (2016) argues that many economic networks are sparse,

providing evidence from commonly used social network data (e.g. AddHealth; Karnataka

Villages (Banerjee et al. 2013); Harvard social network (Leider et al. 2009)). Sparsity poses

a challenge to estimation and inference: if networks are largely empty, there might not

be enough variation in centrality measures to identify the parameters of interest. Despite

its importance, sparsity has received relatively little attention in the network econometrics

literature.

Second, the observed network may differ from the true network of interest. Centrality

measures are often calculated on data which are obtained by survey or constructed using

some proxy for interaction between agents, though subsequent analysis would frequently treat

the true network as known. Ignoring measurement error may thus lead to estimates that

perform poorly. A growing literature works with networks that are assumed to be measured

with error. However, they generally do not consider sparse settings. This is important

since sparsity and measurement error are mutually reinforcing: sparser networks contain

weaker signals, which are in turn more difficult to pick out from noisy measurements. The

upshot is that OLS estimators computed on sparse, noisy networks may have particularly

poor properties. Asymptotic theory that ignore these features will provide similarly poor

approximations to their finite sample behavior. Consequently, estimation and inference

procedures based on these theories may lead to invalid conclusions about the economic

significance of centrality measures.

This paper studies the statistical properties of OLS on centrality measures in an asymp-

totic framework which features both measurement error and sparsity. Our analysis focuses

on degree, diffusion and eigenvector centralities, which are among the most popular mea-

sures. Our contribution is threefold: (1) We characterize the amount of sparsity at which

OLS estimators become inconsistent with and without measurement error, finding that this

threshold varies depending on the centrality measure used. Specifically, regression on eigen-

vector centrality is less robust to sparsity than that on degree and diffusion. This suggests

that researchers should be cautious about comparing regressions on different centrality mea-

sures, since they may differ in statistical properties in addition to economic significance. (2)

We develop distributional theory for OLS estimators under measurement error and sparsity.

We restrict ourselves to sparsity ranges under which OLS is consistent, but we find that

asymptotic bias can be large even in this case. Furthermore, the bias may be of larger order

than variance, in which case bias correction would be necessary for obtaining non-degenerate

asymptotic distributions. Additionally, we find that under sparsity, the estimator converges

at a slower rate than is reflected by the usual heteroskedasticity-consistent(hc)/robust stan-

dard errors, requiring a different estimator. (3) In view of the distributional theory, we
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propose novel bias-corrected estimators and inference methods for OLS with sparse, noisy

networks. We also clarify the settings under which hc/robust t-statistics are appropriate for

testing.

Our theoretical results are derived in an asymptotic framework where networks are mod-

eled as realizations of sparse random graphs. As n → ∞, the expected number of links per

agent grows much more slowly than n. Because our statistical model captures important

features of real world data, we expect our methods to be reliable for estimation and infer-

ence with sparse, noisy networks. We provide simulation evidence supporting this view. The

utility of our results is also evident from an application inspired by De Weerdt and Dercon

(2006), where we conduct a stylized study of consumption smoothing and social insurance

in Nyakatoke, Tanzania.

Our choice of asymptotic framework poses technical challenges. First, the eigenvectors

and eigenvalues of sparse random graphs are difficult to characterize. We draw on recent

advances in random matrix theory (Alt et al. 2021a;b; Benaych-Georges et al. 2019; 2020)

to overcome this challenge. Second, spectral norms of random matrices concentrate slowly

in sparse regimes. To obtain our results, we bound the moments of noisy adjacency matrices

by relating them to counts of particular graphs, in the spirit of Wigner (1957) (see Chapter

2 of Tao 2012 more generally). Finally, in order for bias correction to improve mean-squared

error, the bias needs to be estimated at a sufficiently fast rate. Because the variance is of

a lower order than the bias, a naive plug-in approach does not work for estimating higher-

order bias terms, although it is sufficient for the first-order term. We leverage this fact to

recursively construct good estimators for higher order terms.

Related Literature

Our work is most closely related to papers that study linear regression with centrality statis-

tics. To our best knowledge, we are the first to study linear regression with diffusion cen-

trality, though there exist prior work on eigenvector centrality. Le and Li (2020) studies

linear regression on multiple eigenvectors of a network assuming the same type of measure-

ment error as this paper. They focus on denser settings than we do and provide inference

method only for the null hypothesis that the slope coefficient is 0. We are concerned only

with eigenvector centrality, which is the leading eigenvector, but our results cover the sparse

case as well as tests of non-zero null hypotheses (more details in Remark 6). Our paper is

also related to Cai et al. (2021), which proposes penalized regressions on the leading left

and right singular vectors of a network. They consider networks that are as sparse as the

ones we study, but their networks are observed with an additive, normally distributed error
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(more details in Remark 7). Auerbach (2022) also considers linear regressions with network

positions as explanatory variables. However, their approach is nonparametric and results

are provided only in the dense case. Outside of the linear regression setting, Cheng et al.

(2021) considers inference on deterministic linear functionals of eigenvectors. They study

symmetric matrices with asymmetric noise, proposing novel estimators that leverage asym-

metry to improve performance when eigengaps are small. We focus on symmetric matrices

with symmetric noise and study the plug-in estimator in which eigenvector is estimated using

the noisy adjacency matrix in place of the true matrix.

Our paper also relates to a growing body of work that considers measurement error in

centrality statistics. Early work provided simulation evidence that centrality measures on

noisy networks become less accurate as sparsity increases (Costenbader and Valente (2003);

Borgatti et al. (2006)). Segarra and Ribeiro (2015) theoretically studies the stability of

network statistics under perturbations, finding that degree and eigenvector centralities are

stable, while betweenness is not. Avella-Medina et al. (2020) and Dasaratha (2020) consider

settings similar to ours with classical measurement error in the network data, but which

translates to non-linear measurement error in centrality statistics. These authors provide

concentration results for degree and eigenvector centralities among others, but not for dif-

fusion centrality. Additionally, they accommodate less sparsity than us, in part because

we are not concerned with estimation of centrality measures, only their use in subsequent

regression.

A separate literature has focused on non-classical measurement error in the network data.

Chandrasekhar and Lewis (2016) examines settings in which researchers have access to a

panel of networks, but which are constructed using only a partial sample of nodes or edges.

Thirkettle (2019) studies a similar missing data problem, but in a cross-sectional setting with

only one network. The author is concerned with forming bounds on centrality statistics and

does not consider subsequent linear regression. Griffith (2022) considers censoring in network

data, which arises when agents are only allowed to list a fixed number of relationships during

the sampling process. The above papers study missing data problems under the assumption

that the observed network is without error. We assume that the entirety of one network is

observed but with error. Lewbel et al. (2021) studies more general forms of measurement

error in peer effects regression, finding that 2SLS with friends-of-friends instruments is valid

as long as measurement error is small. All of the above papers do not discuss centrality

regressions.

This paper is also connected to the nascent literature on the statistical properties of

sparse networks. A strand of this literature is concerned with network formation models

that can give rise to sparsity in the observed data. Dong et al. (2020) and Motalebi et al.
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(2021) consider modifications to the stochastic block model. A more general model takes

the form of inhomogeneous Erdos-Renyi graph, which are generated by a graphon with a

sparsity parameter that tends to zero in the limit (see for instacne Bollobás et al. 2007

and Bickel and Chen 2009). Our paper takes this approach. Yet another model for sparse

graphs is based on graphex processes, which generalizes graphons by generating vertices

through Poisson point processes (see Borgs et al. 2018, Veitch and Roy 2019 and references

therein). Our choice of inhomogeneous Erdos-Renyi graphs is motivated by their prevalence

in econometrics (Section 3 of De Paula 2017 and Section 6 of Graham 2020a provide many

examples), as well as tractability considerations. To our best knowledge, few papers have

tackled the challenges that sparse networks pose for regression. Two notable exceptions study

network formation models, which take the form of edge-level logistic regressions (Jochmans

2018; Graham 2020b). A separate literature considers estimation of peer effects regressions

involving sparse networks using panel data (Manresa 2016; Rose 2016; De Paula et al. 2020).

Here, sparsity is an assumption used to justify regularization methods. We consider a node-

level regression in a cross-sectional setting with one large network.

More generally, we contribute to the literature on measurement error or error-in-variable

models, in which economic outcomes are driven by unobserved latent variables, although

proxies or noisy measurements of these variables exist. For recent reviews, see Hu (2017) and

Schennach (2020). Classical measurement error is an additive noise that is (conditionally)

independent of the unobserved regressor and has a long history (e.g. Adcock 1878). When the

underlying network is noisily observed, centrality statistics face errors which are non-linear

and non-separable. General non-classical measurement error problems have been studied in

cross-sectional (e.g. Matzkin 2003; Chesher 2003; Evdokimov and Zeleneev 2022) and panel

data settings (e.g. Griliches and Hausman 1986; Evdokimov 2010; Evdokimov and Zeleneev

2020). These papers typically assume that observations can be grouped into units across

which the latent variable and measurement error are independent. This excludes our setting,

since centrality statistics of any given agent depends on the entire network.

The rest of this paper is organized as follows. Section 2 describes the set-up of our paper.

Section 3 presents the theoretical results. Simulation results are contained in Section 4.

In Section 5, we apply our results to the social insurance network in Nyakatoke, Tanzania.

Section 6 concludes the paper with our recommendations for empirical work. All proofs are

contained in Appendix D.
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2 Set-Up and Notation

In this section, we introduce notation before describing our econometric model and the

asymptotic framework.

We use the following notation. When X is a vector or matrix, Xi and Xij refer the i
th and

(i, j)th component of X respectively. Similarly, if Xi or Xij are defined, we use X to denote

the full vector or matrix respectively. X ′ is the transpose of X. When X is a square matrix,

λj(X) denotes the jth eigenvalue of X while vj(X) denotes the corresponding eigenvector.

When f ∈ L2([0, 1]2) is a symmetric real function, λj(f) denotes the jth eigenvalue of the

corresponding Hillbert-Schmidt integral operator, T (g) =
∫
f(x, y)g(y)dy, while ϕj is the

corresponding eigenfunction. For deterministic, monotone sequences xn and yn, we write

xn ≻ zn if xn/zn → ∞ and xn ≺ zn if xn/zn → 0. xn ≈ zn indicates that xn/zn → k, where

0 < k < ∞. We write xn ≽ zn to mean ¬(xn ≺ zn) and similarly for xn ≼ zn. Let ιn be

the n× 1 vector of 1’s. For two m× n matrices X and Z, let X ◦ Z denote their entrywise

(Hadamard) product. Finally, [n] denotes the set of integers from 1 to n.

2.1 Econometric Framework

For simplicity, suppose that there are no covariates besides centrality. Consider the regres-

sion:

Yi = β(d)C
(d)
i + ε

(d)
i

where Yi is the outcome of interest and C
(d)
i is a network centrality measure of type d. We

assume that researchers observe {Yi}ni=1 and either an adjacency matrix A, or a noisy version

Â. A is an n× n matrix whose (i, j)th, Aij, records the link intensities between agents i and

j. Â is some estimate of A.

While we do not observe C
(d)
i , it can be exactly computed using A, or estimated using

Â. The parameter of interest is β(d). After defining the data-generating process for the true

and observed networks, Assumption 3 will provide conditions allowing us interpret β(d) as

the slope coefficient in the linear conditional expectation function of Yi on C
(d)
i .

We assume that the data-generating process yields {(εi, Ui)}ni=1 which are independent

and identically distributed. εi is the linear regression residual and Ui is an unobserved latent

type that will be used to construct the network.

In the following, we describe (i) the data-generating process for A and Â via the Ui’s and

(ii) the use of A and Â in computing/estimating centrality statistics for OLS estimation.

Throughout our discussion, we motivate the econometric framework through the example of

consumption smoothing via informal insurance:

7



Example 1. Suppose we are interested in the relationship between informal insurance and

consumption smoothing. This is a question that has been studied by De Weerdt and Dercon

(2006); Udry (1994); Kinnan and Townsend (2012) and Bourlès et al. (2021) among many

others. Here, we might posit that agents which are more central in the informal insurance

network can better smooth consumption. To test this hypothesis, we are interested in the

regression where Yi is variance in i’s consumption and C
(d)
i is centrality in the informal

insurance network. β(d) is then the reduction in consumption variance associated with being

more central. In the informal insurance network, Aij records the probability that i lends

money to j or vice versa in the event of an adverse income shock. However, A is hard to

obtain by surveys. Instead, we observe the matrix of actual loans Â, which is a noisy measure

of A.

Data-Generating Process for A and Â

Let A be an n × n symmetric adjacency matrix. We assume that the relationship between

two agents in a network is solely determined by their unobserved latent types Ui through

the graphon f :

Assumption 1 (Graphon). Suppose Ui ∼ U [0, 1] and f : [0, 1]2 7→ [0, 1] is such that:∫
[0,1]2

f(u, v) du dv > 0.

Let pn ∈ (0, 1] and j > i, define:

Aij = pnf(Ui, Uj) .

We set Aji = Aij for j < i and normalize Aii = 0 for all i ∈ [n].

In this model, any two agents have a relationship that is between 0 and 1. We can think

of this as a measure of intensity, reflecting factors such as duration of friendship, frequency

of interaction, or similarity in personalities. Alternatively, it could be the probability with

which a relationship is observed. pn is a parameter that we will let go to 0 at various rates.

As we will explain in Section 2.2, this is a theoretical device that will help us understand the

behavior of OLS estimators when the network is sparse. We restrict attention to symmetric

matrices because eigenvector centrality, one of the most popular network centrality measures,

may not be well-defined when the adjacency matrix is not symmetric. We also ignore the

trivial case when f = 0, in which case the network is always empty. Finally, note that
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defining Ui ∼ U [0, 1] is without loss of generality since we have placed no functional form

restrictions on f .

Example 1 (continued). Suppose that Ui ∈ [0, 1] indexes the riskiness of a villager’s income

as a result of the crops they choose to cultivate. Assumption 1 posits that the relation-

ship between two villagers depends only on their respective income risks. For example, if

f(Ui, Uj) = 1−(Ui − Uj)
2, then farmers with similar income risks have higher link intensities

between them. Ui can also incorporate other observed or unobserved farmer characteristics,

such as place of residence, farming skills or gregariousness. Together with the choice of f ,

the graphon is a rich model of linking behavior.

When A is observed, we say that there is no measurement error. This setting provides

a useful benchmark. When A is not observed, we assume that we have access to the noisy

version, Â, generated as follows.

Assumption 2 (Measurement Error). The adjacency matrix with measurement error is the

n× n matrix symmetric Â, where for j > i,

Âij |U
i.i.d.∼ Bernoulli (Aij) .

Set Âji = Âij for j < i. Âii = 0 since Aii = 0. Furthermore, suppose for d ∈ {1, T,∞} that

Âij ⊥⊥ ε
(d)
i | U .

The form of measurement error we consider randomly rounds Aij into zero or one in

proportion to the intensity of the true relationship. Conditional on U , this is an additive

error with a mean of 0, and which is independent across agent pairs. Formally, we are

assuming a conditionally independent dyad (CID) model for Â. This model is commonly

used in econometrics (see for instance Section 3 of De Paula 2017 or Section 6 of Graham

2020a) and is fairly general. By the Aldous-Hoover Theorem (Aldous 1981; Hoover 1979), all

infinitely exchangeable random graphs have such a representation. Roughly, this corresponds

to sampling from a large population in which the labels of agents do not matter. Importantly,

our model excludes strategic network formation for Â, in which agents’ decisions to form or

report links depend on that of the others.

A key motivation for our choice of framework is analytical tractability. Our definitions

imply that conditional on U , Â is a sparse inhomogeneous Erdos-Renyi graph, allowing us

to borrow results from the random graph literature. Nonetheless, the model is a reasonable

description of network data. Measurement error of this form can arise due to limitations
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in data collection, or because networks are constructed by proxy. Below, we discuss how

Example 1 fits our measurement error model. More examples can be found in Appendix B,

where we also discuss our econometric framework in the context of the “Weak Ties” theory

of social networks (Granovetter 1973).

Finally, we assume that measurement error is independent of εi conditional on U . To-

gether with the CID assumption, measurement error on the network is additive white noise,

akin to the type studied in classical measurement error models. In our setting, the key

econometric challenge arises because U is unobserved. This is exacerbated by the fact that

additive, white noise errors in the network translates into non-linear measurement error in

centrality statistics, introducing complications in the analysis.

Example 1 (continued). Assumption 2 is reasonable in the context of our leading example.

Here, each entry of the unobserved Aij represents the probability of loans. However, Âij

records actual loans, which are realizations of Bernoulli(Aij). The conditional independence

assumption means that conditional on friendship, the decision of i to lend to j is independent

of the decision of k to lend to i. This might be the case if the loan amounts are small relative

to the income shortfall, so that any agent’s decision to lend to i does not significantly reduce

their need to borrow. Alternatively, such a condition might be satisfied if borrowing is

private, so that friends of i cannot coordinate their lending decisions.

Centrality Statistics and OLS Estimation

Given our adjacency matrices A and Â, we now define centrality statistics and the OLS

estimators that are based on them.

Centrality measures are agent-level measures of importance in a network. Many central-

ity measures exist, each capturing a different aspect of network position. However, they are

all functions of A and can be exactly computed when A is observed. We focus on three pop-

ular measures: degree, diffusion and eigenvector centralities. While they are most intuitive

when A is binary, centrality measures should be understood as functions of general weighted

(symmetric) adjacency matrices. Except where noted, our definitions are standard (see e.g.

Jackson 2010; Bloch et al. 2021).

Definition 1 (Degree Centrality). Degree centrality computed on the n×n adjacency matrix

A is the n× 1 vector:

C(1) = Aιn .

Agent i’s degree centrality is simply the sum of row i in A. If A is binary, degree centrality

is the number of agents with whom i has a relationship.
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Definition 2 (Diffusion Centrality). For a given δ ∈ [0, 1] and T ∈ N, diffusion centrality

computed on the n× n adjacency matrix A is the n× 1 vector:

C(T ) =

(
T∑
t=1

δtAt

)
ιn .

Proposed by Banerjee et al. (2013), diffusion centrality captures the influence of agent

i in terms of how many agents they can reach over T periods. Consider again the case of

binary A. Then the (i, j)th of At is the number of walks from i to j that are of length t,

which can be thought of as the influence of i on j in period t. Diffusion centrality for agent

i is simply sum of their influence on all other agents in the network over time up to period

T , with a decay of δ per period. Bramoullé and Genicot (2018) provides further discussion

on the theoretical foundations of diffusion centrality. In practice, researchers often choose δ

to be 1/λ1(Â), so that effectively δ → 0 as n → ∞. An extension of our results to this case

is in preparation.

Definition 3 (Eigenvector Centrality). For a given an > 0, eigenvector centrality computed

on the n× n adjacency matrix A is the n× 1 vector:

C(∞) = anv1(A) ,

where v1(A) is the eigenvector corresponding to the eigenvalue of A with the largest absolute

value (leading eigenvalue).

Eigenvector centrality is based on the idea that an individual’s influence is proportional

to the influence of their friends. That is, for some k > 0, we seek the following property:

C
(∞)
i = k

∑
j ̸=i

AijC
(∞)
j for all i ∈ [n] . (1)

The eigenvectors of A solve the above equations, with k being the corresponding eigenvalue.

By the Perron-Frobenius Theorem, the leading eigenvector is the unique eigenvector that

can be chosen so that every entry is non-negative, motivating its use as a centrality measure.

The leading eigenvector of related matrices also emerge as measures of influence in popular

models of social learning (e.g. DeGroot 1974)

The leading eigenvector is well-defined only if the largest eigenvalue of A has multiplicity

1, that is, if λ1(A) ̸= λ2(A). To ensure that this occurs with high probability, we will make

the following assumption when analyzing eigenvector centrality:

Assumption E1. Suppose λ1(f) ̸= λ2(f).
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Note also that eigenvectors are defined only up to scale: if C satisfies Equation 1, so

will anC for any an ∈ R. Eigenvector centrality is commonly defined to have length 1 (e.g.

Banerjee et al. 2013; Cruz et al. 2017), although researchers sometimes scale eigenvectors

so that its standard deviation is 1 (Chandrasekhar 2016; Banerjee et al. 2019). Of the two

papers that have considered the statistical properties of regression on eigenvector centrality,

Cai et al. (2021) sets the length to
√
n, claiming it to be a normalization. Le and Li

(2020) does not fix the length, though their goal is essentially to recover the projection

C(d)β(d) and not β(d) itself. We depart from the literature by leaving an as a free parameter.

We will analyze the properties of regression on eigenvector centrality making explicit their

dependence on an. As we explain in Section 3.1, the choice of an is not innocuous and can

have implications for estimation and inference.

This paper focuses on the above three centrality measures, which are intimately related

(Bloch et al. 2021). When T = 1, C(1) ∝ C(T ). Furthermore, as shown by Banerjee et al.

(2019), if δ ≥ 1/λ1(A),

lim
T→∞

C(T ) ∝ C(∞) .

We can thus understand the centrality measures as lying on a line, motivating our notational

choice. Notably, we do not discuss betweenness and closeness centralities. These are path-

based measures of centrality,which do not have clearly defined counterparts in the graphon.

We conjecture that their analysis require a different statistical framework and defer it to

future work.

Example 1 (continued). In the context of risk sharing and social insurance, we can interpret

• C
(1)
i as the probability-weighted number of friends who will lend to or borrow from i.

• C
(T )
i as the probability-weighted number of friends who will lend to or borrow from

i directly or through their friends. T is the maximum length of the borrowing chain.

For example if T is 2, i can borrow from friends of friends but not friends of friends of

friends. δ is the increased difficulty of borrowing from a person that is one step further,

e.g. of borrowing from friends of friends relative to borrowing from a friend directly.

• C
(∞)
i as requiring the borrowing ability of i to be proportional to the borrowing ability

of their friends. Implicitly, this means agents can form borrowing chains that are

arbitrarily long.

When A is observed,we have access to the following infeasible estimators.
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Definition 4 (OLS Estimators without Measurement Error). Suppose A is observed. For

d ∈ {1, T,∞}, define the OLS estimators for β(d) to be

β̃(d) =
Y ′C(d)

(C(d))
′
C(d)

.

When networks are observed with errors, we assume that network centralities are esti-

mated using Â in place of A:

Definition 5 (Centralities with Measurement Error). Suppose Â is observed but not A.

Define:

Ĉ(1) = Âιn ,

Ĉ(T ) =

(
T∑
t=1

δtÂt

)
ιn ,

Ĉ(∞) = anv1(Â) .

The corresponding OLS estimators are thus defined using the noisy centrality measures.

Definition 6 (OLS Estimators with Measurement Error). Suppose Â is observed but not

A. For d ∈ {1, T,∞}, define the OLS estimators for β(d) to be

β̂(d) =
Y ′Ĉ(d)(

Ĉ(d)
)′
Ĉ(d)

.

Next, define the regression residuals.

Definition 7 (Regression Residuals). For d ∈ {1, T,∞}, define:

ε̃
(d)
i := Yi − β̃(d)C

(d)
i , (2)

ε̂
(d)
i := Yi − β̂(d)Ĉ

(d)
i . (3)

We conclude this section with an assumption on the moments of εi conditional on Ui:

Assumption 3. Suppose for d ∈ {1, T,∞} that:

(a) E
[
ε
(d)
i |Ui

]
= 0

(b) 0 < σ2 ≤ E

[(
ε
(d)
i

)2
|Ui

]
≤ σ̄2 < ∞.
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(c) E

[∣∣∣ε(d)i

∣∣∣3 |Ui

]
≤ κ̄3.

In the above, (a) justifies linear regression since it implies that

E
[
ε
(d)
i

∣∣C(d)
i

]
= 0 .

Meanwhile, (b) and (c) control the amount of heterogeneity across different Ui’s. (c) implies

the upper bound in (b). We introduce σ̄2 for notational convenience.

2.2 Sparse Network Asymptotics

To better capture the behavior of estimators when agents in the networks have few rela-

tionships with one another, we study their properties under sparse network asymptotics.

Following Bollobás et al. (2007) and Bickel and Chen (2009), we want to consider settings

in which pn → 0 as n → ∞. pn is not an empirical quantity. It is a theoretical device to

ensure that the sequence of models we consider remains sparse even as n → ∞.

In many settings, a vector or matrix is said to be sparse if many of the entries are 0.

In our setting, we say that A and Â are sparse if their row sums – that is, the actual or

observed degrees of agents respectively – are small. Because the entries of Â are restricted

to be binary, having low degrees is the same as having many entries which are 0. We do

not place such a restriction on the entries of A, so that row sums could be small even if no

entry takes value 0, as long as each non-zero entry is small. Sparsity of A should therefore

be understood as referring to low intensities of relationship between agents, but which gives

rise to observed networks, Â, that are sparse in the conventional sense.

To see how pn → 0 gives rise to sparsity, suppose for example that pn → c > 0. Then

the network is dense and each agent has total relationships that are roughly of order n in

expectation. That is,

E
[
C

(1)
i

]
≈ n,

corresponding to a situation in which each agent is linked to many others. In practice, how-

ever, researchers may face sparse networks, in which each agent has few or weak relationships.

Choosing pn → 0 leads to networks that remain sparse as n increases. For example, if we

set pn = k/n for some k > 0, then,

E
[
C

(1)
i

]
≈ 1 .

That is, each agent has a bounded number of relationships in expectation. A sequence of pn

that goes to 0 more quickly corresponds to data which is more sparse.
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To understand the effect of sparsity on OLS estimation, we therefore study how the

statistical properties of β̃(d) and β̂(d) change as we vary the rate at which pn → 0. Our

goal is to obtain theoretical results that better describe the properties of estimators under

sparsity by explicitly incorporating it into the asymptotic framework. Using pn to model

sparse networks is standard in statistics literature (see e.g. Bickel and Chen 2009; Bickel et al.

2011, Borgs et al. 2018 Avella-Medina et al. 2020 among many more). Within econometrics,

related approaches have been used to study network formation models (Jochmans 2018;

Graham 2020b).

As a theoretical device, pn bears semblance to drifting alternatives in local power analysis

(also known as Pitman drift; see Rothenberg 1984). Suppose we want to compare the power

of tests for the hypothesis H0 : β = β0 against H1 : β = β1. Asymptotic analysis with a

fixed β1 is not useful since consistent tests have power that converges to 1 in probability

under all alternatives, so that we cannot meaningfully differentiate between these tests. One

interpretation of such a failure is that the asymptotic model fails to capture reality: in the

limit, |β1 − β0| is large relative to the sampling noise which is of order 1/
√
n. In practice,

sampling noise can be large relative to the parameter of interest. Local power analysis

employs the alternative hypothesis β1 = β0 + k/
√
n. As such, |β1 − β0| = |k/

√
n| goes to

0 at the same rate as sampling noise. Intuitively, as the sample size gets larger, the testing

problem also becomes harder. The upshot is that the testing problem is non-trivial even in

the limit, better modeling the finite sample problem.

A similar approach is taken in the weak instruments literature, which is concerned with

the instrumental variable regressions in which the relevance condition is barely satisfied. To

understand the resulting statistical pathologies, Staiger and Stock (1997) propose to model

the strength of the instrument as decaying to 0 at rate 1/
√
n, so that strength of the signal

in the first stage estimation is on par with sampling uncertainty. This approach has since

led to long and productive lines of inquiry (see Andrews et al. 2019 and references therein).

Our drifting parameter pn serves a similar purpose: by letting pn → 0, we better capture

the statistical properties of estimators when networks are sparse. While we do not focus on

any reference level of sparsity, comparing across levels of sparsity will prove instructive.

3 Theoretical Results

In this section, we present our theoretical results about the property of OLS estimators

under varying amounts of sparsity. In Section 3.1, we characterize the level of sparsity

at which consistency of β̃(d) and β̂(d) fails. The upshot is that measurement error renders

OLS estimators less robust to sparsity. In particular, eigenvector centrality is less robust
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to sparsity than degree under measurement error. The regimes for pn cannot be estimated

from data. Instead, we provide a rule-of-thumb for gauging the reliability of OLS estimators.

Section 3.2 presents distributional theory for β̃(d) and β̂(d) under regimes of sparsity for under

which they are consistent. This leads to tools for bias correction and inference with sparse

and noisily measured networks.

3.1 Consistency

This section presents the rates on pn at which β̃(d) and β̂(d) are consistent. We also discuss

the role of an in ensuring the consistency of β̃(∞) and β̂(∞). Since rates on pn cannot be

estimated, we present rules-of-thumbs for determining the amount of sparsity in practical

applications.

We first consider the case when the true network A, is observed:

Theorem 1 (Consistency without Measurement Error). Suppose Assumptions 1, 2 and 3

hold. Then,

(a) For d ∈ {1, T}, β̃(d) p→ β(d) if and only if pn ≻ n− 3
2 .

(b) Suppose Assumption E1 also holds. Then, β̃(∞) p→ β(∞) if and only if an → ∞.

As such, we have consistency of OLS for degree and diffusion centralities provided that the

network is not too sparse. Under extreme sparsity, variation in C
(d)
i becomes much smaller

than variation in εi and it is not possible to learn about β(d). In the case of eigenvector

centrality, consistency requires conditions on the normalization factor an but not on pn.

This is because an directly controls the variance of C(∞), so that it is able to undo the effect

of sparsity in the absence of measurement error.

Our result is similar in spirit to Conley and Taber (2011), which studies the properties of

difference-in-difference (DiD) estimators when there are few treated unit. In an asymptotic

framework that takes the number of treated units to be fixed, the DiD estimator is simi-

larly inconsistent in the limit. More generally, consistency of OLS with i.i.d. data requires
√
nσX → ∞, where σX is the variance of the regressor. Theorem 1 instantiates this condition

for centrality regressions under sparsity.

Interestingly, the choice of an matters even when the network is dense. To see why,

suppose f = pn ·1 so that A = pnιnι
′
n. Then C(∞)(A) = anιn/

√
n. Note that it is independent

of pn. We can then write:

β̃(∞) =

√
n

an
· Y

′ιn
ι′nιn

= β(∞) +
1

an
√
n

n∑
i=1

ε
(d)
i .
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Under our assumptions, 1√
n

∑n
i=1 ε

(d)
i

d→ N
(
0,Var

(
ε
(d)
i

))
. Therefore, an → ∞ is necessary

for the consistency of β̃(∞).

The above example, together with Theorems 2 and 6 in the next section, makes clear

that an has important implications for the statistical properties of β̃(∞) and β̂(∞). We can

understand this phenomenon by analogy to OLS with i.i.d. observations, in which we are

able to consistently estimate β but not
√
nβ.

To our knowledge, we are the first to emphasize the importance in choosing an appropri-

ately. Various an’s are used in applied work and in econometric theory. Applied researchers

sometimes set an = 1 (e.g. Cruz et al. 2017; Banerjee et al. 2013). Other times, they

divide v1(Â) by its standard deviation, in order to interpret β(∞) as the effect of a one

standard-deviation increase in v1(A) (e.g. Chandrasekhar et al. 2018; Banerjee et al. 2019).

Corollary 5 shows that an ≈
√
n under some conditions on f . Cai et al. (2021), which studies

eigenvector regressions under a different model for measurement error, sets an to
√
n. In the

formulation of Le and Li (2020), an appears only implicitly and they do not prove consistency

of β̂(∞). Instead, they show that ∥β̂(∞)Ĉ(∞) − β(∞)C(∞)∥∞
p→ 0. Of papers which study

estimation of centrality statistics, Avella-Medina et al. (2020) sets an =
√
n while Dasaratha

(2020) sets an = 1. We remark that changing an amounts to changing the definition of β̃(∞).

The parameter of interest ultimately depends on the researcher. From the perspective of

consistency, however, models with an → ∞ are strictly preferable to those with an ≼ 1. And

as we will see in Theorem 6, particular choices of an may be useful for inference.

We next consider the case with measurement error:

Theorem 2 (Consistency with Measurement Error). Suppose Assumptions 1, 2 and 3 hold.

Then,

(a) For d ∈ {1, T}, β̂(d) p→ β(d) if and only if pn ≻ n−1.

(b) Suppose also that Assumption E1 holds. Then, β̂(∞) p→ β(∞) if an → ∞ and

pn ≻ n−1

√
log n

log log n
. (4)

Suppose pn satisfies

n−1 (log log n)4 ≺ pn ≺ n−1

√
log n

log log n
. (5)

Then β̂(∞) is inconsistent for β(∞).
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Theorem 2 gives the rates at which OLS regression on each centrality is consistent under

measurement error. We summarize the rates from Theorems 2, together with that from 1,

in Figure 1.

Under measurement error, β̂(∞) is consistent under less sparsity than β̂(1) and β̂(T ), even

when we set an → ∞. In other words, β̂(∞) is less robust to sparsity than β̂(1) and β̂(T ).

This occurs because eigenvalues and eigenvectors are sensitive to noise under sparsity. Our

proof uses the homogeneous Erdos-Renyi graph as a counterexample. Suppose f = 1 so that

A is rank 1 with v1(A) = ι/
√
n. When the lower bound in Equation 5 is satisfied, Alt et al.

(2021b) shows that Â has an eigenvalue, call it ν, with a corresponding eigenvector that is

approximately ι/
√
n. If ν is the largest eigenvalue of Â, v1(Â) is close to v1(A). However,

when pn satisfies Equation 5 , ν turns out to be much smaller than λ1(Â). The result is that

v1(Â) is almost orthogonal to v1(A). Intuitively, sparsity weakens the signal in Â, so that

its leading eigenvector is pure noise.1 It then becomes impossible to estimate the leading

eigenvector of A for OLS estimation. On the other hand, consistency of β̂(1) and β̂(T ) only

requires the mean of Â to concentrate to that of A, which occurs as long as pn ≻ n−1.

An important implication of our result is that centrality measures may have differing

predictive value for outcomes in sparse regimes, not only because they differ in economic

significance, but also because they differ in statistical properties. In particular, suppose

diffusion centrality leads to estimates which are significantly different from 0 at some level

α, while eigenvector does not. If the underlying networks are sparse, it would be erroneous

to conclude that diffusion centrality is structurally meaningful while eigenvector is not, since

sparsity might be driving the observed results.

Finally, let us compare the rates in Theorem 2 with those in Theorem 1. As Figure

1 shows, measurement error renders OLS less robust to sparsity. While β̃(1) and β̃(T ) are

consistent as long as pn ≻ n−3/2, β̂(1) and β̂(T ) now require that pn ≻ n−1. Whereas β̃(∞) did

not require any conditions on pn for consistency, β̂(∞) does. Moreover, this requirement is

more stringent than that on β̂(1) and β̂(T ). OLS on eigenvector centrality is therefore more

sensitive to measurement error than on degree or diffusion.

Remark 1. Avella-Medina et al. (2020) and Dasaratha (2020) provide results essentially

showing that for d ∈ {1,∞}, ∥Ĉ(d) −C(d)∥ → 0 with probability approaching 1 if pn ≻ logn
n

.

Our focus is on the OLS estimators β̃(d) and β̂(d) and we find that thresholds of consistency

that are strictly below logn
n

for all d ∈ {1, T,∞}.

1In fact, v1(Â) exhibits localization. That is, its mass concentrates on the agent who happens to have
the largest realized degree, which is purely a result of chance.
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β̃(1), β̃(T )

β̂(1), β̂(T )

n−1

√
log n

log log n
n−3/2 n−1 n−1(log log n)4

β̃(∞)

β̂(∞)

Consistent Inconsistent

0 1

Figure 1: Ranges of consistency for each estimator. When the network is observed with error,
regression on eigenvector centrality is less robust to sparsity than on degree or diffusion.
When the network is known, much more sparsity can be accommodated.

Remark 2. Theorem 2 does not determine the behavior of β̂(∞) when pn ≺ n−1 (log log n)4.

Up to this threshold, we know by Alt et al. (2021b) that OLS is inconsistent only because

we have descriptions of both eigenvalues and eigenvectors. To our knowledge, recent devel-

opments in random matrix theory do not provide any description of eigenvectors below this

threshold. Hence, it is not clear what type of pathologies arises below pn ≺ n−1 (log log n)4

and how that might affect the behavior of β̂(∞). Description of eigenvalues is more complete:

below this point, we know that λ1(Â)/λ1(A) → ∞ (see Alt et al. 2021a; Benaych-Georges

et al. 2019; Benaych-Georges et al. 2020). Since the estimated eigenvalues are noise, we

conjecture that the estimated eigenvectors are as well. If so, we would not expect β̂(∞) to

be consistent.

Remark 3. To improve the robustness of eigenvector centrality to sparsity, we can consider

regularizing Â. Appendix C considers such an approach and finds that consistency with

regularized eigenvector obtains when pn ≻ n−1.

Rule-of-Thumb for Determining Consistency of β̂(d)

Theorems 2 provides consistency results for β̂(d) based on the rates at which pn → 0. It is

therefore desirable to have methods for determining if we are in the regime for which OLS is
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consistent with measurement error. However, pn is a theoretical device and the rate at which

it is going to 0 is not a quantity that can be estimated. Instead, we propose a rule-of-thumb

for determining the regime of pn and the consistency of β̂(d).

Definition 8 (Connectivity). Let Â be a binary network. Two agents i and j are connected

if Â contains a path from i to j. A collection of agents I is connected if every pair in I × I
is connected. We say that Â is connected if [n] is connected.

Definition 9 (Largest Component). For a binary network Â, define

L1 := max
I⊆[n], connected

|I| .

We say that Â has a giant component if L1 ≈ n.

In words, Â has a giant component if its largest connected component is a non-vanishing

fraction of the total number of nodes.

It is well-known that inhomogeneous random graphs exhibit threshold behavior in con-

nectivity and in the existence of the largest component at the following rates:

Theorem 3. Suppose Assumptions 1 and 2 hold. Then as n → ∞,

(a) (Theorem 3.1, Bollobás et al. 2007). pn ≈ n−1 if and only if Â has a unique giant

component with probability approaching 1.

(b) (Theorem 1, Devroye and Fraiman 2014). pn ≈ n−1 log n if and only if Â is connected

with probability approaching 1.

In words, if we observe that Â has a giant component, we can expect that pn ≻ n−1. If we

observe that Â is connected, then we can expect that pn ≻ n−1 log n ≻
√

logn
logn logn

. Together

with Theorem 2, this motivates the following rule-of-thumb:

Rule of Thumb 1.

(a) Treat β̂(1) and β̂(T ) as consistent only if Â has a giant component with L1 > n/2.

(b) Treat β̂(∞) as consistent only if Â is connected.

Note that if Â is connected, it also has a giant component of size n. Our criteria are

therefore nested. The choice of the constant 1/2 in rule (a) ensures uniqueness of the largest

component, but is technically arbitrary. Figure 2 provides graphical illustration.
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Figure 2: From left to right, a connected network, a disconnected network with giant compo-
nent, and a disconnected network without a giant component. Networks are obtained from
simulation with f = 1, n = 100 and pn = 1/

√
n,

√
log n/n and 1/n respectively.

Remark 4. Our rule of thumb for the consistency of β̂(∞) essentially requires that pn ≻
n−1 log n. This is not necessary. Instead, we could, for example, formulate a rule-of-thumb

based on localization of the leading eigenvector. However it is less appealing to do so since

such a criteria is non-nested with our criterion for a giant component, and additionally

introduces a tuning parameter.

3.2 Distributional Theory

In this section, we study the asymptotic distributions of β̃(d) and β̂(d) under sparsity and

measurement error. We focus on regimes of pn under which each estimator is consistent and

find that measurement error still leads to asymptotic bias. Specifically,

β̂(d) p→ β(d) but E
[
lim
n→∞

npn

(
β̂(d) − β(d)

)]
=: B(d) ̸= 0 .

Furthermore, the bias may be of larger order than the standard deviation of β̂(d). In this

case, it would not be possible to obtain a non-degenerate limiting distribution without bias

correction.

As such, we propose bias-correction and corresponding inference methods based on β̂(1)

and β̂(T ). The distribution of β̂(∞) is more tricky to characterize. We will propose a data-

dependent choice of an that leads to convenient properties. Readers who are only interested

in the implementation of inference can refer to the summary in Table 1.
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3.2.1 Centralities without Measurement Error (β̃(1), β̃(T ), β̃(∞))

Our first result states that heteroskedasticity-consistent (hc) or robust t-statistics yield vaild

inference in the absence of measurement error.

Theorem 4. Suppose Assumptions 1 and 3 hold.

(a) Suppose pn ≻ n−3/2. Then, for d ∈ {1, T},

S̃(d) =
β̃(d) − β(d)√

Ṽ (d)

p→ N(0, 1) .

where Ṽ (d) =

(∑n
i=1

(
C

(d)
i

)2)−2∑n
i=1

(
C

(d)
i

)2 (
ε̃
(d)
i

)2
.

(b) Suppose an → ∞. Then,

S̃
(∞)
0 =

β̃(∞) − β(∞)√
Ṽ (∞)

p→ N(0, 1) .

where Ṽ (∞) =

(∑n
i=1

(
C

(∞)
i

)2)−2∑n
i=1

(
C

(∞)
i

)2 (
ε̃
(∞)
i

)2
.

In the above, ε̃i is as defined in Equation (2).

Our formulation of the t-statistic highlights that inference on β(1) and β(T ) does not

require the sparsity parameter pn to be specified. This is important since pn is in general not

identified (Bickel et al. 2011) and follows from the convenient fact that the t-statistic is self-

normalizing. Intuitively, the sparsity terms in the numerator and the denominator are of the

same order, so that they “cancel out”. Hansen and Lee (2019) makes a similar observation

in the context of cluster-dependent data: although the means of such data converge at a

rate that changes based on the dependence structure within each cluster, this rate does not

need to be known for estimation and inference, due to the aforementioned self-normalizing

property.

We note that Ṽ (1) = Op (n
−3p−2

n ), Ṽ (T ) = Op

(
n−2T−1p−2T

n

)
. These are the rates of

convergence for β̃(1) and β̃(T ) respectively. In the absence of sparsity (i.e. if pn = 1), the

rate of convergence is faster than n−1/2. This is because having a network amounts to n2

observations. Asymptotically, the regressor C
(d)
i has much more variation than the regression

error εi, leading to the higher rate of convergence. Finally, we note that Ṽ (∞) = Op(a
−2
n ).

In the presence of measurement error, however, the above result does not obtain. The

next two subsections presents distributional theory for β̂(1) and β̂(T ), and β̂(∞).
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3.2.2 Degree and Diffusion Centrality under Measurement Error (β̂(1), β̂(T ))

For β̂(1) and β̂(T ), measurement error leads to bias and also slows down the rate of conver-

gence. This is the content of the following theorem:

Theorem 5 (Inference – Degree and Diffusion). Suppose Assumptions 1, 2 and 3 hold and

that pn ≻ n−1.

(a) Suppose β(1) ̸= 0. Then,

Ŝ(1) :=
β̂(1) − β(1)

(
1− B̂(1)

)
β(1)
√

V̂ (1)

d→ N(0, 1) ,

where

V̂ (1) =
1

2

(
n∑

i=1

(
Ĉ

(1)
i

)2)−2∑
j ̸=i

Âij

(
Ĉ

(1)
i + Ĉ

(1)
j

)2
, B̂(1) =

(
n∑

i=1

(
Ĉ

(1)
i

)2)−1

ιnÂιn .

(b) Suppose β(T ) ̸= 0. Then,

Ŝ(T ) =
β̂(T ) − β(T )

(
1− B̂(T )

)
β(T )

√
V̂ (T )

d→ N(0, 1) ,

where

V̂ (T ) =
1

2

(
n∑

i=1

(
Ĉ

(T )
i

)2)−2

· δ4T · ι′n

Â ◦

(
2T∑
t=1

(
Â2T−tιn

)(
ι′nÂ

t−1
))◦2

 ιn ,

B̂(T ) =

(
n∑

i=1

(
Ĉ

(T )
i

)2)−1 2T−1∑
t=1

bT (t, δ) · ιnÂtιn .

Here, ◦ denotes the entrywise product. The formula for bT (t, δ), up to T = 10, can be

found in Appendix A.

(c) Suppose for d ∈ {1, T} that β(d) = 0. Then,

Ŝ
(d)
0 :=

β̂(d)√
V̂

(d)
0

d→ N(0, 1) ,
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where

V̂
(d)
0 =

(
n∑

i=1

(
Ĉ

(T )
i

)2)−2 n∑
i=1

(
Ĉ

(d)
i

)2 (
ε̂
(d)
i

)2
.

Here, ε̂
(d)
i is as defined in Equation (3).

Our results are stated in terms of B̂(d) and V̂ (d) – estimators for bias and variance – though

they should be understood as statements about the true bias and variance of the estimators

in combination with statements about estimation feasibility. Note also that results for β̂(T )

specializes to that for β̂(1) when setting T = δ = 1.

When β(d) = 0 (case (c)), our result asserts that the hc/robust variance estimator is

consistent for the variance of β̂(d). However, that is no longer the case when then β(d) ̸= 0

(cases (a) and (b)). Here, we find that β̂(d) become biased. That is, β̂(d) is not centered

at β(d). The bias of β̂(1) comprises only one term. However, bias for β̂(T ) comprises an

exponentially growing number of terms. This provides another intuitive explanation for the

poor properties of the eigenvector centrality, since as Banerjee et al. (2019) proves, can be

considered the limit of diffusion centrality as T → ∞. Comparing cases (a) and (b) with (c)

also shows that the asymptotic distributions for β̂(d) are discontinuous in β(d) at 0.

Additionally, we see that the asymptotic variance of β̂(d) differs from that which is es-

timated by hc/robust standard error. In fact, V̂
(d)
0 /V̂ (d) p→ 0. Note that the difference in

asymptotic variance is not the result of bias estimation. In particular, replacing B̂(d) with

its limit in probability (appropriately scaled) will not change the asymptotic variance of

Ŝ(d). This stands in contrast to settings such as Regression Discontinuity Design, in which

estimation of the asymptotic bias leads to larger asymptotic variance in the relevant test

statistic (Calonico et al. 2014).

Additionally,
√
V̂ (d)/B̂(d) = Op (pn) so that the bias is of larger order than the variance.

Bias correction is therefore necessary for obtaining a non-degenerate asymptotic distribution.

To see this, write:

β̂(d) − β(d)

√
vn

=
β̂(d) − β(d) −B(d)/npn√

vn︸ ︷︷ ︸
=:Γ1

+
B(d)/npn√

vn︸ ︷︷ ︸
=:Γ2

.

Suppose we chose vn = Var(β̂(d)). Then Γ1
d→ D, where D is some non-degenerate distribu-

tion. However, Γ2 diverges to +∞ or −∞ depending on the sign of Bd. On the other hand,

suppose we chose vn so that Γ2 is bounded. Then Γ1
d→ 0 since Var(β̂(d))/vn → 0. That is,

its limit is degenerate. Bias correction is thus necessary for inference.

In order for bias correction to improve mean-squared error, bias must be estimated at
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a sufficiently fast rate. This is not trivial for β̂(T ). Bias of the β̂(T ) comprises terms of

the form ιnA
tιn. However, the naive plug-in estimator ιnÂ

tιn does not converge sufficiently

fast for t ≥ 2, even though it works well for t = 1. Using this latter fact, we recursively

construct good estimators for ιnÂ
tιn when t ≥ 2, which can then be used to construct B̂(T ).

The resulting estimator does not have a closed form expression in terms of T . We provide

explicit formulae for T ≤ 10 in Tables 7 and 8.

Hypothesis Testing

Our theory suggests the following test for d ∈ {1, T}.

Definition 10. To test the hypothesis H0 : β(d) = β0 against H1 : β(d) ̸= β0 at the signifi-

cance level of α, define

ϕ(d) =


1

{∣∣∣∣ β̂(d)√
V̂

(d)
0

∣∣∣∣ ≥ Φ−1
(
1− α

2

)}
if β0 = 0 ,

1

{∣∣∣∣ β̂(d)−β0(1−B̂(d))

β0

√
V̂ (d)

∣∣∣∣ ≥ Φ−1
(
1− α

2

)}
otherwise.

(6)

where Φ is the CDF of the standard normal distribution.

One-sided tests can be constructed by modifying the rejection rule in the usual way. It

is immediate that the test is consistent:

Corollary 1 (Inference for β(1) and β(T )).

(a) If β(d) = β0, E
[
ϕ(d)
]
→ α.

(b) If β(d) ̸= β0, E
[
ϕ(d)
]
→ 1.

When β(d) ̸= 0, β̂(d) needs to be centered by subtracting β(d)
(
1− B̂(d)

)
instead of β(d).

We will refer to this form of centering as bias correction for β̂(d). As we explained at the

start of Section 3, bias correction is necessary for β̂(d) to attain a non-degenerate limiting

distribution when asymptotic bias is of larger order than variance. Indeed, B̂(d)/
√
V̂ (d) =

Op

(
p
−1/2
n

)
. As such, if pn ≺ 1,division by

√
V̂ (d) blows up B̂(d).

In the bias for β̂(T ), terms with larger t’s dominate those with smaller t’s. When pn is

dense enough, terms with small t’s may actually much smaller than
√

V̂ (T ) so that they can

be ignored. With only the stipulation that pn ≻ n−1 however, a non-degenerate asymptotic

distribution can only be achieved when all terms are included.
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Confidence Intervals

Because V̂
(d)
0 estimates variance only when β(d) = 0, the usual confidence intervals based on

V̂
(d)
0 need not attain nominal coverage. This failure occurs for two countervailing reasons.

Firstly, the quantity V̂0 is meant to estimate,

Var

(
n∑

i=1

C
(d)
i εi

)
=: V

(d)
0 .

However, V
(d)
0 under-estimates variance of β̂(d) when β(d) ̸= 0. That is,

Var

(
β̂(d) − E[β(d)]√

V0

)
→ ∞ .

On the other hand, the bias in β̂(d) means that

V̂
(d)
0 ≈ V0 + β(d)B̂(d)

n∑
i=1

(
C

(d)
i

)2
.

The second term in the above equation can be large, such that V̂
(d)
0 may exceed V̂ . This

turns out to be the case in our application in Section 5.

To obtain confidence intervals for β(d) consider the following:

Definition 11. For d ∈ {1, T} and a given α, let

C(d)
0 :=

[
β̂(d) − Φ−1

(
1− α

2

)√
V̂

(d)
0 , β̂(d) + Φ−1

(
1− α

2

)√
V̂

(d)
0

]
. (7)

Suppose β̂(d) ≥ 0 and let

C(d) :=

[
β̂(d)

1− B̂(d) + Φ−1
(
1− α

2

)√
V̂ (d)

,
β̂(d)

1− B̂(d) − Φ−1
(
1− α

2

)√
V̂ (d)

]
. (8)

Finally, let C(d)
∗ = C(d)

0 ∪ C(d).

Remark 5. If β̂(d) < 0, the upper bound in the above definition of C(d) is smaller than the

lower bound. In this case,

C(d) :=

[
β̂(d)

1− B̂(d) − Φ−1
(
1− α

2

)√
V̂ (d)

,
β̂(d)

1− B̂(d) + Φ−1
(
1− α

2

)√
V̂ (d)

]
.
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The following is immediate:

Corollary 2 (Confidence Interval). P
(
β(d) ∈ C(d)

∗

)
→ 1− α .

We can obtain one-sided confidence intervals by modifying the bounds as usual. More

generally, as long as C(d) is a 1 − α confidence interval for β(d) ̸= 0 and C(d)
0 is a 1 − α

confidence interval when β(d) = 0, their unions will produce a 1 − α confidence interval for

β(d) unconditionally. In particular, it is always valid to set C(d)
0 = {0}. This can be useful

when it is not important to exclude 0 from the confidence interval. For example, suppose

we want one-sided confidence intervals that upper bounds β(d). We can then consider using

C(d)
0 = {0} and C(d) =

(
−∞ ,

β̂(d)

1− B̂(d) − Φ−1 (1− α)
√
V̂ (d)

]
.

If β̂(d) > 0, C(d)
∗ = C(d). For the reasons discussed above, we can also have

C(d)
∗ ⊊

(
−∞ , β̂ + Φ−1 (1− α)

√
V̂

(d)
0

]
.

As before, such a situation arises in our application (Section 5).

Bias Correction

Since the bias of the OLS estimators β̂(1) and β̂(T ) can be estimated, it is reasonable to

consider the following bias-corrected estimators:

Definition 12 (Bias-Corrected Estimators). For d ∈ {1, T}, define

β̌(d) =
β̂(d)

1− B̂(d)
.

Bias-corrected estimators have faster rates of convergence:

Corollary 3. Suppose pn ≻ n−1. For d ∈ {1, T}, β̌(d) − β(d) = Op

(
n−2p

−3/2
n

)
.

For reference, β̂(d) − β(d) = Op (n
−1p−1

n ).

3.2.3 Eigenvector Centrality under Measurement Error (β̂(∞))

We next consider inference on β̂(∞). Eigenvector centrality can be badly biased under spar-

sity, which makes inference challenging. However, strategic choices of an can overcome many

of these issues. We first introduce the following simplifying assumption:
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Assumption E2 (Finite Rank). Suppose f has rank R < ∞:

f(u, v) =
R∑

r=1

λ̃rϕr(u)ϕr(v) , (9)

where ∥ϕr∥ = 1 for all r ∈ [R] and if r ̸= s,∫
[0,1]

ϕr(u)ϕs(u)du = 0 .

Furthermore, suppose that

∆min = min
1≥r≥R−1

∣∣∣λ̃r − λ̃r+1

∣∣∣ > 0 .

In Equation (9), we express f in terms of its eigenfunctions {ϕr}Rr=1. Assumption E2

implies that the true network has low-dimensional structure and is satisfied by many popular

network models, such as the stochastic block model (Holland et al. 1983, also see Example 2

below) and random dot product graphs (Young and Scheinerman 2007). This assumption is

also commonly found in the networks literature (e.g. Levin and Levina 2019; Li et al. 2020),

and the matrix completion literature more generally (e.g. Candès and Tao 2010; Negahban

and Wainwright 2012; Chatterjee 2015; Athey et al. 2021). Importantly, existing papers on

inference with eigenvectors (Le and Li 2020; Cai et al. 2021) also make this assumption.

Note also that Assumption E2 implies Assumption E1.

Example 2 (Stochastic Block Model). The Stochastic Block Model (SBM) is one of the

earliest statistical models of networks. It assumes that individuals fall into groups g ∈
{1, ..., B} and that the true network depends only on group membership. For example,

suppose that a classroom has two groups: jocks, nerds. The SBM posits that the strength

of the tie between any jock and any nerd are the same. Analogously for that between any

two jocks or any two nerds, though all three ties can be of different intensity. Suppose the

proportion of each group is πg and that the link probability is pg,g′ = pg,g′ . Then the graphon

is a step-function on [0, 1]2 with B2-steps and rank B. It is visualized in Figure 3.

With the low-rank asumption, we can consider the asymptotic distribution of β̂(∞) in a

few cases.

Theorem 6 (Inference – Eigenvector). Suppose Assumptions 1, 2, 3 and E2 hold.

(a) Suppose either:
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p1,B

p2,B

p2,B

· · ·

· · ·

· · ·

···

···

···

Figure 3: The graphon f of a stochastic block model with B blocks. f is a step-function
with B2 steps and is of rank B.

(i) β(∞) = 0, or,

(ii) pn ≻ n−1 log n and an ≺ (npn)
3/2, or,

(iii) For some η > 0,

pn ≻ n−1

(
log n

log log n

) 1
2
+η

. (10)

and an ≺ npn.

Then,

Ŝ
(∞)
0 :=

β̂(∞) − β(∞)
(
1− B̂(∞)

)
√
V̂

(∞)
0

d→ N(0, 1) . (11)

where

V̂
(∞)
0 =

(
n∑

i=1

(
Ĉ

(∞)
i

)2)−2 n∑
i=1

(
Ĉ

(∞)
i

)2 (
ε̂
(∞)
i

)2
, B̂(∞) =

(
λ1(Â)

)−1

.

In the above, ε̂
(∞)
i is as defined in Equation (3).

(b) Suppose pn ≻ 1√
n
, an ≻ n

√
pn and β(∞) ̸= 0. Then,

Ŝ(∞) :=
β̂(∞) − β(∞)

(
1− B̂(∞)

)
√

V̂ (∞)

d→ N(0, 1) ,
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where

V̂ (∞) = 2

(
λ1(Â)

n∑
i=1

(
Ĉ

(∞)
i

)2)−2∑
j ̸=i

Âij

((
Ĉ

(∞)
i

)2
+
(
Ĉ

(∞)
j

)2)
.

Note that the statistics above do not require R or pn to be specified. This is useful since

estimating R may be challenging in addition to pn being unidentified (Bickel et al. 2011).

Our result describes the asymptotic distribution β̂(∞), which depends on β(∞) and an.

Case (a) gives conditions under which inference with hc/robust t-statistic is appropriate. As

with β(1) and β(∞), the usual test works if β(∞) = 0. However, it also works if β(∞) ̸= 0

provided that an is small. On the other hand, if an is large, case (b) suggests that we get

behavior that is more in line with that of β(1) and β(∞) when target parameters are non-

zero. However, to obtain the result in case (b), we require very strong conditions on pn due

to greater difficulty in controlling the behavior of estimated eigenvector, as the discussion

following Theorem 5 explains.

When β(∞) ̸= 0, the differences in case (a) and (b) arise because an controls the relative

sizes of network measurement error and regression error. The latter dominates if an is

sufficiently small and has the advantage of being easy to characterize. Hence, in the absence

of compelling reasons for choosing an to be other values, researchers can consider choosing an

for statistical convenience. In particular, if an is chosen so that case (a) obtains, then usual

hc/robust variance estimator based t-statistic and confidence interval have the expected

properties. We propose such an an below. However, we stress that a smaller an also implies

a lower rate of convergence. In effect, we are changing the model from one with faster but

unknown rate of convergence, to one with a rate that is slower but estimable.

Finally, our result here suggests the use of the bias-corrected estimator, as with degree

and diffusion centrality:

β̌(∞) =
β̂(∞)

1− B̂(∞)
.

Choice of an

The following data-dependent choice is convenient:

Corollary 4. Suppose Assumptions 1, 2, 3 and E2 hold. Suppose also that an =

√
λ1(Â)

is estimated. If pn satisfies Equation (10),

β̂(∞) − β(∞)√
V̂ (∞)

d→ N(0, 1) .
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Since λ1(Â) ≈ λ̃1npn, the above choice of an satisfies the conditions in case (a)(iii) of

Theorem 6, accommodating close to the maximum possible amount of sparsity for β̂(∞). It

also obviates the need for bias correction since the bias is always of lower order than the

variance at this rate. Furthermore, such an an has intuitive appeal since it implies that

Ĉ(∞)
(
Ĉ(∞)

)′
= λ1(Â)v1(Â)

(
v1(Â)

)′
= argmin

rank(M)=1

∥∥∥M − Â
∥∥∥
2
.

In words, scaling the estimated eigenvectors to

√
λ1(Â) means that the outer product of

Ĉ(∞) is the best rank-1 approximation of Â. In proposing eigenvector centrality, Bonacich

(1972) in fact cites this property as one of the key motivations, arguing that

√
λ1(Â)v1(Â)

can be interpreted as the “social interaction potential” of a given agent.

It is also common for applied researchers to scale eigenvector centrality by its standard

deviation (e.g. Banerjee et al. 2019; Chandrasekhar et al. 2018). This is typically done so

that the regression coefficient can be interpreted as the effect on outcome of a one standard-

deviation increase in eigenvector centrality. In effect, this procedure sets an ≈
√
n:

Corollary 5. Suppose Assumptions 1, 2, 3 and E2 hold. Suppose also that

an =

 1

n

∑
i=1

(
[v1(Â)]i −

1

n

∑
i=1

[v1(Â)]i

)2
−1/2

.

Then

an = (1 + op(1)) ·
√
n√

1− E [ϕ1(U1)]
2
.

As such, Case (a) (ii) of Theorem 6 applies when pn ≻ n−2/3.

Note that with this choice of an, our theorem is able to accommodate less sparsity that

if an =

√
λ1(Â).

Remark 6. Le and Li (2020) provides methods for testing the hypothesis ∥β(∞)C(∞)∥2 = 0

when pn ≻ n−1/2. They accommodate regressions on multiple eigenvectors, but in a setting

with only one eigenvector, their result asserts that the t-statistic with the homoskedastic

variance estimator can be used to test the hypothesis that β(∞) = 0. Theorem 6 does not

cover regression on multiple eigenvectors but it accommodates greater sparsity and facilitates

tests of β(∞) = β0 for β0 ̸= 0.

Remark 7. To compare our results to that of Cai et al. (2021), set an =
√
n. The condition
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in Case (a) (ii) of Theorem 6 specializes to pn ≻ n−2/3. Cai et al. (2021) can accommodate

pn ≻ n−1 but they assume measurement error that is additive and i.i.d. Gaussian.

With Measurement Error No Error

β(1)/β(T ) β(∞) (Case 6(b)) β(∞) (Case 6(a)) β(1)/β(T )/β(∞)

H0 : β
(d) = 0 t-test t-test

t-test t-test

H0 : β
(d) = β0 ̸= 0 Def. 10 Def. 10

Conf. Intervals Def. 11 Def. 11 t-stat based t-stat based

Table 1: Summary of inference procedures. The hc/robust t-test is appropriate for all
β(d), d ∈ {1, T,∞} for the null hypothesis that β(d) = 0. It is also appropriate for non-
zero null hypotheses (1) for all β(d) if there is no measurement error, or (2) for β(∞) in the
presence of measurement error if an satisfies the conditions in Theorem 6 case (a). Whenever
the t-test is appropriate, the t-statistic based confidence intervals are also valid. In all other
cases, refer to Definition 10 for testing and Definition 11 for confidence intervals.

4 Simulations

In this section, we present simulation evidence to support our theory. We will consider the

unobserved adjacency matrix A defined as

Aij =

pn if i ̸= j ,

0 otherwise.

In other words, the graphon is f = 1. The observed adjacency matrix is Â, where for i > j,

Âij = Bernoulli(Aij). Âii = 0, Âji = Âij.

Our regression model is:

Yi = βC
(d)
i + ε

(d)
i ,

where C
(d)
i are centrality measures calculated on A. In this simulation, we draw Ui

i.i.d.∼ U [0, 1],

ε
(d)
i

i.i.d.∼ N(0, 1), where ε
(d)
i ⊥⊥ Ui and ε

(d)
i ⊥⊥ Âjk for all i, j, k ∈ [n]. We will set β = 1. As

before, β̃(d) is used when A is observed, and β̂(d) is used when only Â is observed.

We revisit our three sets of results in turn: inconsistency under sparsity, bias correction

and normal approximation.
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4.1 Inconsistency Under Sparsity

The first regime of interest is pn = 1/n. Theorem 1 asserts that β̃(1) and β̃(T ) are consistent.

β̃(∞) is consistent provided that an → ∞ for eigenvector centrality.

We start with the last claim, which is supported by Figure 4. For n = 100, we see that the

choice of scaling clearly affects how well the estimator is able to concentrate around β = 1.

The plots for larger values of n are qualitatively similar. This also hints at the trade-off that

made in Theorem 6: we can choose an =

√
λ1(Â) so that the distribution of β̂(∞) is easy to

characterize, but this will slow down the rate of convergence. Since this subsection concerns

current practice, we will set an =
√
n for its remainder.

We return to the first claim concerning consistency of β̃(d) when pn = 1/n. Figure 5

indeed shows the distribution of β̃(d) for each n. The estimators concentrate around β as n

increases, in line with our result. However, Theorem 2 asserts that β̂(1), β̂(T ) and β̂(∞) are

all inconsistent when pn = 1/n. Their distributions, presented in Figure 6, concords with

our result. Indeed, we see that β̂(1) and β̂(T ) are attenuated by constant amount as n → ∞,

while β̂(∞) converges in probability to 0.

Finally, we consider the case when pn = n−1
√

logn
log logn

. In this regime, β̂(1) and β̂(T ) are

consistent but β̂(∞) is not. We see suggestive evidence of this in Figure 7, where β̂(∞) is

drifting further away from β as n increases. The opposite occurs with β̂(1) and β̂(T ). Though

the rate of convergence is slow, it is visible.

4.2 Bias Correction

Even in regime dense enough such that β̂(1), β̂(T ) and β̂(∞) are consistent, they can still be

subject to biases that affect their rates of convergence. This motivates the bias-corrected

estimators in Definition 12. In this subsection, we study the effects of bias correction in the

regime pn = 1/
√
n.

Figure 8 shows the distribution of the estimators when n = 500. Here an =

√
λ̂1(Â). We

see that bias correction is effective in correctly centering β̂(1) and β̂(T ). The same is true for

β̂(∞) though to a smaller extent, in line with claims in Corollary 4. Results for other values

of n are qualitatively similar.

4.3 Distributional Theory

Finally, we investigate the quality of the normal approximations proposed in Theorems 5 and

6. As before, we consider the regime pn = 1/
√
n. Figure 9 presents the distribution of test

statistics (in purple) which our theorems predict have the standard normal distribution (in
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Figure 4: Distribution of β̃(∞) for n = 100, pn = 1/n under various an. β = 1 (orange dashed
line).

Figure 5: Distribution of β̃(d) for pn = 1/n. For β̃(∞), an =
√
n. β = 1 (orange dashed line).

Figure 6: Distribution of β̂(d) for pn = 1/n. For β̃(∞), an =
√
n. β = 1 (orange dashed line).
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Figure 7: Distribution of β̂(d) for pn = n−1
√

log n/ log log n. For β̃(∞), an =
√
n. β = 1

(orange dashed line).

Figure 8: Distributions of β̂(d) and their bias corrected versions β̌(d) for pn = 1/
√
n. β = 1

(orange dashed line).

Figure 9: Distribution of the centered and scaled test statistics in Theorems 5 and 6. Robust
refers to tests based on t-statistic with robust (heteroskedasticity consistent) standard errors.

35



gray). We see that the two distributions are indeed close. It is also common for applied re-

searcher to compute the usual t-statistic with heteroskedaticity consistent (robust) standard

errors and conduct inference under the assumption that it has a standard normal distribu-

tion. For comparison, we include the distribution of the t-statistic (in lavender). Corollary 4

justifies the use of this statistic when an =

√
λ̂1(Â) but our theory for degree and diffusion

centralities is based on a different statistic. Indeed, we see that the robust t-statistic can

be quite far from the standard normal distribution in both location and dispersion. This

suggests that our method would lead to more reliable tests.

We next examine the size and power of tests based on our distributional theory. We

consider testing the hypothesis H0 : β = β0 against H1 : β ̸= β0 at 5% level of significance.

Table 2 presents size of the test when β = 1 is correctly specified. For degree and diffusion

centralities, our theory provides test statistics which differ from the robust t-statistic. As

we see from the table, the tests control size well. Tests for degree and diffusion centralities

that are based on the robust t-statistic has Type I error over 50% across all sample sizes.

For eigenvector centrality, our theory predicts that the robust t-statistic will perform well

Indeed, it has size close to 5%. We also consider testing the hypothesis β = 0. Power for

this test is presented in Table 3. For this null hypothesis, our theory suggests the use of

the robust t-statistic. Reassuringly, the tests all have power close to 1. To understand how

power changes as we vary the alternative hypothesis, we hone in on the case where n = 500

and pn = 1/
√
n. Figure 10 presents the rejection probability of our test under various

alternatives. We see that the our tests control size and have good power. Comparatively,

tests based on the robust t-statistic have poor size control when β ̸= 0. Furthermore, they

can have poor power against particular alternatives owing to the bias. We conclude that

our tests have desirable properties and are preferred to the test with robust t-statistic when

networks are sparse and observed with noise.

5 Empirical Demonstration

In this section, we demonstrate the relevance of our theoretical findings via an application

inspired by De Weerdt and Dercon (2006).2 In the developing world, social insurance is

an important mechanism for smoothing consumption, because of restricted access to for-

mal credit markets (Rosenzweig 1988; Udry 1994; Fafchamps and Lund 2003; Kinnan and

Townsend 2012, among many others). De Weerdt and Dercon (2006) examines the case of

Nyakatoke, a village with 120 households in rural Tanzania, and find that social insurance

2The data is obtained from Joachim De Weerdt’s website: https://www.uantwerpen.be/en/staff/

joachim-deweerdt/public-data-sets/nyakatoke-network/.
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Figure 10: Power of the two-sided test of H0 : β = 1 under various alternatives. Test at 5%
level of significance (orange dashed line).

pn Statistic
Sample Size

100 200 500 1000 2000

0.1

Degree
Ours 0.055 0.052 0.067 0.062 0.065
Robust 0.656 0.673 0.690 0.668 0.674

Diffusion
Ours 0.049 0.053 0.064 0.059 0.060
Robust 0.889 0.894 0.887 0.871 0.898

Eigenvector 0.045 0.043 0.037 0.056 0.044

n−1/3

Degree
Ours 0.066 0.065 0.067 0.058 0.065
Robust 0.330 0.450 0.573 0.705 0.783

Diffusion
Ours 0.080 0.070 0.074 0.057 0.064
Robust 0.645 0.734 0.813 0.888 0.934

Eigenvector 0.045 0.042 0.051 0.042 0.058

n−1/2

Degree
Ours 0.072 0.049 0.051 0.037 0.062
Robust 0.659 0.801 0.949 0.993 0.999

Diffusion
Ours 0.071 0.045 0.053 0.037 0.059
Robust 0.881 0.948 0.993 1.000 1.000

Eigenvector 0.077 0.045 0.050 0.050 0.047

Table 2: Size of 5% level two-sided tests when β = 1 is correctly specified. Robust refers to
tests based on t-statistic with robust (heteroskedasticity consistent) standard errors.
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pn Statistic
Sample Size

100 200 500 1000 2000

0.1

Degree - Robust 1.000 1.000 1.000 1.000 1.000
Diffusion - Robust 1.000 1.000 1.000 1.000 1.000

Eigenvector 0.845 0.995 1.000 1.000 1.000

n−1/3

Degree - Robust 1.000 1.000 1.000 1.000 1.000
Diffusion - Robust 1.000 1.000 1.000 1.000 1.000

Eigenvector 0.998 1.000 1.000 1.000 1.000

n−1/2

Degree - Robust 1.000 1.000 1.000 1.000 1.000
Diffusion - Robust 1.000 1.000 1.000 1.000 1.000

Eigenvector 0.832 0.947 0.994 1.000 1.000

Table 3: Power of 5% level two-sided tests of H0 : β = 0 when β = 1. Under this H0, the
our test statistics is the usual t-statistic with robust (heteroskedasticity-consistent) standard
errors.

helps households to smooth consumption following health shocks. The data they use com-

prises five rounds of panel data on household consumption, illness among other covariates,

collected from February to December 2000. The authors also had access to social network

data collected during the first round of the survey, in which households were asked for the

identities of those who they depend on or depend on them for help. The authors then

regress a household’s change in consumption following illness on the mean consumption of

their network neighbors, finding evidence of positive co-movements.

Another way to demonstrate the effect of social insurance on consumption smoothing

could be to regress variance in consumption on network centrality measures. Specifically,

the regression:

Yi = βC
(d)
i + ε

(d)
i

where Yi is variance in food expenditure and C
(d)
i is a centrality measure. The above regres-

sion could be preferred to the authors’ specification if we are unsure about the covariates

that reflect social assistance. For example, it might be a household’s stock of savings that

co-move with the decision to lend to their friends, rather than their own consumption. We

might also be interested in more complex patterns of assistance, which could be summarized

in an appropriate centrality measure, but which might not be tractable with covariates.

The above regression requires information on network of social insurance, in which each

entry Aij records the probability i lends money to j over the survey period. We can consider

obtaining proxies for this network using one of the following:

Unilateral Social (US). Âij = 1 if either i or j names the other household as a party
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Figure 11: Social and Financial networks in Nyakatoke.

that they could depend on or which depends on them for help.

Bilateral Social (BS). Âij = 1 only if both i and j names the other household as a

party that they could depend on or which depends on them for help.

Unilateral Financial (UF). Âij = 1 if either i or j lends money to the other at least

once over the survey period.

The authors study US and BS. We also consider UF since self-reported loan data is available.

The networks are plotted in Figure 11 and the degree distributions are described in Table

4. By construction, BS is much sparser than US. Due to the availability of five panels, UF

is denser than the other two. With n = 120 households,
√
n = 11. We might therefore be

concerned that npn ≺
√
n especially for US and BS. Note that US and UF are connected.

BS is disconnected but has a clear giant component. Our rule-of-thumb suggests that β̂(1)

and β̂(T ) should across all three networks. β̂(∞) should perform well on US and UF, but

likely not on BS.

(n = 119) Mean Median Min Max

Unilateral Social 8.02 7 1 31
Bilateral Social 2.30 2 0 10
Unilateral Financial 16.53 14 3 79

Table 4: Degree distributions of various networks in Nyakatoke.

Regression results are presented in Table 5. In this exercise, an =

√
λ1(Â), δ = 1/

√
λ1(Â)

and T = 2. We first note that estimated attenuation factor is the smallest (i.e. furthest from

1) in the sparsest network BS. This is in line with our result that bias is Op(n
−1p−1

n ). Diffusion

centrality is generally estimated to be less attenuated, because δ is small (≈ 0.2). As the
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last column shows, bias correction can lead to substantially different estimates. Table 5 also

presents p-values for tests of the two-sided hypothesis that β(d) = 0. Centrality statistics on

BS appears to be more predictive of the variance in food consumption than that on US and

UF. This highlights that researchers should not choose their network proxies on the criteria of

sparsity alone. In the case of Nyakatoke, evidence suggests that US reflects “desire to link”,

rather than actual risk-pooling (Comola and Fafchamps 2014), such that US is a noisier

proxy than BS. By the same account, the large number of discrepancies between reporting

by borrowers and lenders of the same loan suggests that the loan data is subject to severe

mis-reporting (Comola and Fafchamps 2017), rendering it an equally poor proxy. Among

the centrality statistics on BS, eigenvector has the least predictive power by far, in line with

what is suggested by our rule-of-thumb. We reiterate our warning that eigenvector centrality

is less robust to sparsity than degree and diffusion, such that the p-values might reflect the

poor statistical properties of the measure, rather than its lack of economic significance.

Estimate p-value Atten. Bias Corr.

Unilateral
Social

Degree -1064 0.67 0.91 -1172
Diffusion -4274 0.77 1.00 -4290

Eigenvector -12353 0.86 0.91 -13548

Bilateral
Social

Degree -11604 0.06 0.74 -15592
Diffusion -23672 0.16 0.95 -24883

Eigenvector -10543 0.93 0.78 -13434

Unilateral
Financial

Degree -412 0.70 0.96 -429
Diffusion -4559 0.74 1.00 -4561

Eigenvector -15040 0.77 0.96 -15699

Table 5: Regression results for various networks. Estimate is β̂(d). p-value is for the two-
sided test that H0 : β = 0. Atten. is the estimated attenuation factor of β̂(d) (i.e. 1− B̂(d)).
Bias Corr. presents the bias corrected estimates, β̌(d).

Finally, we present one-sided confidence intervals for values of β(d) based on our results.

These are useful for putting bounds on parameter values. In our example, a lower bound

could be intuitively interpreted as the limits to informal risk-sharing, a quantity which could

be useful for policymakers deciding whether or not to provide agricultural insurance. We

focus on BS since it appears to be the only informative network. Results for degree and

diffusion are presented in Table 6. Results for eigenvector are omitted since our theory is

based on the usual robust t-statistic. Our confidence intervals leads to tighter lower bound

than the those based on the robust t-statistic. Furthermore, as we increase the desired

coverage, our confidence intervals increase much more slowly than the hc/robust confidence
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intervals. This is because the latter is linear in Φ−1(1− α/2), whereas this term appears in

the denominator of C(d) (as in Definition 8).

90% 95% 99%

Degree
Robust (-19500, ∞) (-21700, ∞) (-25900, ∞)
Ours (-18800, ∞) (-20000, ∞) (-22700, ∞)

Diffusion
Robust (-45000, ∞) (-51000, ∞) (-62400, ∞)
Ours (-25200, ∞) (-25300, ∞) (-25500, ∞)

Table 6: One-sided confidence intervals for degree and diffusion.

6 Conclusion

In this paper, we studied the properties of linear regression on degree, diffusion and eigen-

vector centrality when networks are sparse and observed with error. We show that these

issues threaten the consistency of OLS estimators and characterize the amount of sparsity at

which inconsistency occurs. In doing so, we find that eigenvector centrality is less robust to

sparsity than the others and that the statistical properties of the corresponding regression

is sensitive to the scaling.

Additionally, we show that an asymptotic bias arises whenever the true slope parameter

is not 0 and that the bias can be of larger order than the variance, so that bias correction is

necessary to obtain a non-degenerate limiting distribution from the OLS estimator. Finally,

we provide estimators for the bias and variance which, together with our central limit theo-

rem, facilitates inference under sparsity and measurement error. We confirm our theoretical

results via simulations, which suggest that our approximation result works better for esti-

mation and inference when networks are sparse, particularly when compared to the use of

robust standard errors and the associated t-statistics. Finally, we demonstrate the relevance

of our theoretical results by studying the social insurance network in Nyakatoke, Tanzania.

In sum, our results suggest that applied researchers view their results with caution when

applying OLS to sparse, noisy networks. Specifically, comparing the statistical significance

of eigenvector centrality with degree or diffusion may yield misleading conclusions since

they differ not only in economic significance but also statistical properties. Provided that

the networks are not too sparse, the usual t-test is valid for null hypothesis that the slope

parameter is 0. However, alternative inference procedures will be necessary for other null

hypotheses. Additionally, there may be scope for improving estimation by the use of bias-

corrected estimators. Estimation and inference under extreme sparsity remains an open
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question, though as Le et al. (2017) and Graham (2020b) show, parametric models may

point to a way forward.

References

Adcock, R. J. (1878). A problem in least squares. The Analyst 5 (1), 53–54.

Aldous, D. J. (1981). Representations for partially exchangeable arrays of random variables.

Journal of Multivariate Analysis 11 (4), 581–598.

Alt, J., R. Ducatez, and A. Knowles (2021a). Extremal eigenvalues of critical Erdős–Rényi
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pp. 2141–2161. Institut Henri Poincaré.
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Leider, S., M. M. Möbius, T. Rosenblat, and Q.-A. Do (2009). Directed altruism and enforced

reciprocity in social networks. The Quarterly Journal of Economics 124 (4), 1815–1851.

Levin, K. and E. Levina (2019). Bootstrapping networks with latent space structure. arXiv

preprint arXiv:1907.10821 .

Lewbel, A., X. Qu, X. Tang, et al. (2021). Social Networks with Mismeasured Links. Boston

College.

Li, T., E. Levina, and J. Zhu (2020). Network cross-validation by edge sampling.

Biometrika 107 (2), 257–276.

Lovász, L. (2012). Large networks and graph limits, Volume 60. American Mathematical

Soc.

Manresa, E. (2016). Estimating the structure of social interactions using panel data. Working

Paper .

Matzkin, R. L. (2003). Nonparametric estimation of nonadditive random functions. Econo-

metrica 71 (5), 1339–1375.

Motalebi, N., N. T. Stevens, and S. H. Steiner (2021). Hurdle blockmodels for sparse network

modeling. The American Statistician 75 (4), 383–393.

Negahban, S. and M. J. Wainwright (2012). Restricted strong convexity and weighted matrix

completion: Optimal bounds with noise. The Journal of Machine Learning Research 13 (1),

1665–1697.

Rajkumar, K., G. Saint-Jacques, I. Bojinov, E. Brynjolfsson, and S. Aral (2022). A causal

test of the strength of weak ties. Science 377 (6612), 1304–1310.

Reagans, R. and E. W. Zuckerman (2001). Networks, diversity, and productivity: The social

capital of corporate r&d teams. Organization science 12 (4), 502–517.

Rose, C. (2016). Identification of spillover effects using panel data. Technical report, Working

Paper.

47



Rosenzweig, M. R. (1988). Risk, implicit contracts and the family in rural areas of low-income

countries. The Economic Journal 98 (393), 1148–1170.

Rothenberg, T. J. (1984). Approximating the distributions of econometric estimators and

test statistics. Handbook of econometrics 2, 881–935.

Sacerdote, B. (2011). Peer effects in education: How might they work, how big are they and

how much do we know thus far? In Handbook of the Economics of Education, Volume 3,

pp. 249–277. Elsevier.

Schennach, S. M. (2020). Mismeasured and unobserved variables. In Handbook of Econo-

metrics, Volume 7, pp. 487–565. Elsevier.

Segarra, S. and A. Ribeiro (2015). Stability and continuity of centrality measures in weighted

graphs. IEEE Transactions on Signal Processing 64 (3), 543–555.

Staiger, D. and J. H. Stock (1997). Instrumental variables regression with weak instruments.

Econometrica 65 (3), 557–586.

Tao, T. (2012). Topics in random matrix theory, Volume 132. American Mathematical Soc.

Thirkettle, M. (2019). Identification and estimation of network statistics with missing link

data. Working Paper .

Udry, C. (1994). Risk and insurance in a rural credit market: An empirical investigation in

northern nigeria. The Review of Economic Studies 61 (3), 495–526.

Van der Vaart, A. W. (2000). Asymptotic statistics, Volume 3. Cambridge university press.

Veitch, V. and D. M. Roy (2019). Sampling and estimation for (sparse) exchangeable graphs.

The Annals of Statistics 47 (6), 3274–3299.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in

data science, Volume 47. Cambridge university press.

Wigner, E. P. (1957). Characteristics vectors of bordered matrices with infinite dimensions

ii. Annals of Mathematics , 203–207.

Xu, G. (2018). The costs of patronage: Evidence from the british empire. American Eco-

nomic Review 108 (11), 3170–98.

Young, S. J. and E. R. Scheinerman (2007). Random dot product graph models for social

networks. In International Workshop on Algorithms and Models for the Web-Graph, pp.

138–149. Springer.

48



Appendices

A Bias of Diffusion under noise (β̂(T ))

Tables 7 and 8 presents bT (t, δ) used for calculating the bias estimator in Case (b) of Theorem

5. In practice, papers rarely compute T > 5. We provide these terms for T ≤ 10. Functions

for computing the bias terms for arbitrary T are available from the author’s website.

Each row of Tables 7 and 8 provide the coefficients for δs in bT (t, δ), for a particular T

and t. To obtain the bias formula for a given T , sum across all t’s for a given T . For example,

when T = 2, the correction term is

(
δ2 − 3δ3 + 3δ4

)
ι′nÂιn +

(
3δ3 − 2δ4

)
ι′nÂ

2ιn +
(
2δ4
)
ι′nÂ

3ιn .

T t δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10

1 1 1

2
1 1 -3 3
2 3 -2
3 2

3

1 1 -3 7 -4 -8
2 3 -4 10
3 5 -2 -2
4 4 -1
5 2

4

1 1 -3 7 -13 -15 91 -182
2 3 -4 5 24 -94 160
3 5 -7 -1 36 -84
4 8 -6 -2 27
5 7 -5
6 5 -4
7 3

5

1 1 -3 7 -13 -4 161 -500 952 -654
2 3 -4 5 24 -178 450 -740 314
3 5 -7 11 57 -222 456 -362
4 8 -15 6 66 -225 317
5 12 -14 4 59 -148
6 11 -13 6 32
7 9 -12 6
8 7 -8
9 4

Table 7: Coefficients for the bias of diffusion centrality, bT (t, δ). Blanks indicate a coefficient
of 0.
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B Additional Motivation for Econometric Framework

This section discusses the connection of our econometric framework to the “Weak Ties”

theory of social networks. We also present other examples of network data that fit our

framework.

B.1 “Weak Ties” Theory

In the seminal paper titled “The Strength of Weak Ties”, Granovetter (1973) argues that

lower intensity links, which constitute most of any given person’s relationships, are the

key drivers of many important social and economic outcomes. For example, in tracing the

network of job referrals, the author finds that 83% of recent job changers in a Boston suburb

found their new jobs through friends whom they saw fewer than twice a week, and who were

only “marginally included in the current network of contacts”. The author further notes: “It

is remarkable that people receive crucial information from individuals whose very existence

they have forgotten.” A series of empirical work has found evidence in favor of the weak ties

theory across diverse applications such as innovation (e.g. Reagans and Zuckerman 2001),

economic development (e.g. Eagle et al. 2010) and job referrals (e.g. Rajkumar et al. 2022).

This theory lends credence to our econometric model, in which an unobserved network of

weak ties not only drives economic effects but also generates a sparse observed network.

B.2 Additional Examples

Example 3. Carvalho et al. (2021) studies the propagation of shocks through production

networks during the Great East Japanese Earthquake of 2011. In the ideal production

network, Aij records the value of i’s sales to j as a proportion of the value of i’s total sales.

In turn, Aij depends on Ui and Uj, which might index the quality of a firm’s product, with

higher quality firms requiring more and higher quality inputs. However, these variables

are not observed. Instead, the authors have access to data from a credit reporting agency

which includes supplier and customer information for firms. The authors explicitly note

two limitations in their data: “First, it only reports a binary measure of interfirm supplier-

customer relations... we do not observe a yen measure associated with their transactions.

Second, the forms used by [the credit agency] limit the number of suppliers and customers

that firms can report to 24 each.” Suppose firms only report suppliers from whom they receive

delivery during the month in which the forms are filed. Then a supplier that sends fewer

inputs are more likely to be omitted in any given month. Abstracting away from concerns

about network censoring (see Griffith 2022), the conditional independence assumption would
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also be satisfied if the delivery schedules for suppliers are independent.

Example 4. Xu (2018) studies how patronage affected the promotion and performance of

bureaucrats in the Colonial Office of the British Empire. In the ideal network for measuring

patronage, Aij records intensity of the friendship between i and j. Here, Ui might index traits

such as gregariousness, polo skills and drinking habits among others. Bureaucrats having

more in common with their patrons may be more likely to be recommended for promotion.

However, the link intensity between bureaucrats are not observed. Instead, the paper proxies

for relationships using indicators for shared ancestry, membership of social groups (such as

the aristocracy) or attendance of the same elite school or university. In this context, our

data-generating process means that bureaucrats who are closer are more likely to satisfy the

above criteria for connection. The conditional independence assumption would be satisfied

if the lack of observation are independent across agent pairs, e.g. if some university records

were randomly lost.
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C Eigenvector Regularization

As our analysis in Section 3.1 shows, regression with eigenvector centrality is more sensitive

to sparsity under measurement error than degree or diffusion centralities. In this section,

we propose a regularization method that makes eigenvector centrality competitive with the

alternatives.

Definition 13 (Regularized Eigenvector Centrality). Suppose pn is known. Let

λi := min

{
2npn

Ĉ
(1)
i

, 1

}
.

Then, define Âλ to be the regularized version of Â, where(
Âλ

)
ij
=
√

λiλjÂij .

Finally, define regularized eigenvector centrality and the corresponding OLS estimator to be:

Ĉ
(∞)
λ = anv1

(
Âλ

)
, β̂

(∞)
λ =

Y ′Ĉ
(∞)
λ(

Ĉ
(∞)
λ

)′
Ĉ

(∞)
λ

.

Our proposed measure is the principal eigenvector of Âλ, which is in turn a regularized

version of the observed adjacency matrix Â. The regularization technique, proposed in Le

et al. (2017), re-weights edges so that in Ĉ
(1)
λ,i ≤ 2npn for all i ∈ [n]. It is well-known that

high-degree vertices interfere with concentration of random matrices and that their removal

solves the problem (Feige and Ofek 2005). However, such a drastic procedure is not ideal:

intuition suggests that high degree vertices are important in a network, forming hubs that

connect many individuals. Le et al. (2017) shows that re-weighting the edges of high-degree

vertices is sufficient to enforce concentration. In turn, we have consistency of β̂
(∞)
λ as our

next theorem asserts.

Theorem 7 (Consistency with Regularized Eigenvector Centrality). Suppose Assumptions

1 and 2 hold. Suppose further that E[εi|Ui] = 0 and E[ε2i ] = σ2 < ∞ and λ1(f) > λ2(f).

Then, an → ∞ and pn ≻ n−1 implies that β̃(∞) p→ β(∞).

Our result shows that β̂
(∞)
λ is able to accommodate as much sparsity as β̂(1) and β̂(T ).

As such, when faced with sparse matrices, researchers could benefit from using regularized

eigenvector centrality in their regression instead. One difficulty with using the method is
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that pn is not known in practice. It is not possible to estimate pn since the graphon f is

unknown. Under a mild assumption, however, the following is possible:

Corollary 6 (Estimated pn). Suppose
∫
[0,1]2

f(u, v) dudv ≥ M > 0. Let

ρn = pn

∫
[0,1]2

f(u, v) dudv , ρ̂n =
ι′nAιn

n(n− 1)
.

Next define

λ̂i = min

{
3nρ̂n

M · Ĉ(1)
i

, 1

}
.

Using λ̂ in place of λ in Definition 13 does not change the conclusions of Theorem 7.

C.1 Proof of Theorem 7

As in the Proof of Theorem 2, write

β̂
(∞)
λ = β(∞) + β(∞)

(
v1(Âλ)

)′ (
v1(A)− v1(Âλ)

)
+

1
√
an

v1(Âλ)
′ε(∞) .

By Theorem and Remark 2.2 of Le et al. (2017), with probability at least 1− n−r,∥∥∥A− Â
∥∥∥ ≤ kr3/2

√
npn

where k is a universal constant. Therefore, by the Davis-Kahan inequality (Theorem 4.5.5

in Vershynin 2018),

∥∥∥v1(A)− v1(Â)
∥∥∥ ≤ ∥Â− A∥

npn (λ1 − λ2)
= Op

(
1

√
npn

)
= op(1) .

Again, note that

E

[
v1(Â)

′ε(∞)

∣∣∣∣U] ≤ ∥v1(Â)∥σ̄2 = σ̄2.

Since an → ∞, conclude that 1√
an
v1(Â)

′ε(∞) p→ 0 and that β̂
(∞)
λ

p→ β(∞).

C.2 Proof of Corollary 6

We first note that ρ̂ is a good estimator of ρn:
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Theorem 8 (Theorem 1, Bickel et al. 2011). Under Assumption 1 and 2,

√
n

(
ρ̂n
ρn

− 1

)
d→ N(0, σ2)

for some σ2 > 0.

Next, noting that M/
∫
f(u, v) ≤ 1

P

(
ρ̂n
M

≥ 2Mpn
3
∫
f(u, v) , dudv

)
→ 1

Setting

λ̂i = min

{
3nρ̂n

M · C(1)
i

, 1

}
ensures that w.p.a. 1,

max
i∈[n]

C
(1)
λ,i ≤

3nρ̂n
M

≤
2
∫
f(u, v) dudv

M
· npn .

By Remark 2.1 of Le et al. (2017), the oracle procedure re-weights edges adjacent to fewer

than 10/(npn) nodes. Since λ̂i ≥ λi, re-weighting using λ̂ therefore also alters edges adjacent

to fewer than 10/(npn) nodes. As such, by Theorem 2.1 of ∥Âλ̂ − A∥ = O(
√
npn) w.p.a. 1.

The proof then proceeds as in that of Theorem 7.
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D Proofs

Without loss of generality, let f(u, v) = f(v, u) and the f(u, u) = 0. Further define:

W =

∫
[0,1]2

f(u, v) dudv .

We state below a convenient lemma:

Lemma 1 (Concentration in Spectral Norm). Suppose Assumptions 1 and 2 hold. Let

ν ∈ (0, 1). Then with probability at least 1− exp
(
−n2p2n

√
k logn
log logn

)
∥∥∥A− Â

∥∥∥ ≤ k (npn)
(1+ν)/2

(
log n

log log n

)(1−ν)/4

where k is a universal constant. In other words,

∥∥∥A− Â
∥∥∥ = Op

(
(npn)

(1+ν)/2

(
log n

log log n

)(1−ν)/4
)

. (12)

D.1 Proof of Theorem 1

In the setting with no measurement error, we write:

β̃(d) =

∑n
i=1 YiC

(d)
i∑n

i=1

(
C

(d)
i

)2 = β +

∑n
i=1C

(d)
i ε

(d)
i∑n

i=1

(
C

(d)
i

)2 .

We first show that OLS is consistent when the lower bounds in the Theorem obtains. Start

with degree:

n∑
i=1

C
(1)
i ε

(1)
i =

n∑
i=1

n∑
j=1

pnf(Ui, Uj)ε
(1)
i

=
pn
2

(
n

2

)
· 1(

n
2

) n∑
i=1

n∑
j=1

f(Ui, Uj)ε
(1)
i + f(Uj, Ui)ε

(1)
j (13)

= Op

(
n3/2pn

)
,

In the last equality, we use our assumption that E
[
ε
(d)
i |Ui

]
= 0 and E

[(
ε
(d)
i

)2
|Ui

]
≤ σ̄2 <

∞, so that
√
n · 1(

n
2

) n∑
i=1

n∑
j=1

f(Ui, Uj)ε
(1)
i + f(Uj, Ui)ε

(1)
j

d→ N(0, γ)
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for some γ > 0 by the standard CLT for U-statistics (e.g. Theorem 12.3 in Van der Vaart

2000). Similarly,

n∑
i=1

(
C

(1)
i

)2
=

n∑
i=1

(
n∑

j=1

pnf(Ui, Uj)

)2

= p2n

n∑
i=1

n∑
j=1

n∑
k=1

f(Ui, Uj)f(Ui, Uk) (14)

= p2n

(
n

3

)
· 1(

n
3

) n∑
k=1

f(Ui, Uj)f(Ui, Uk) = Op(n
3p2n)

By the LLN for U-statistics,

1(
n
3

) n∑
k=1

f(Ui, Uj)f(Ui, Uk)
p→ γ

Next, note that γ > 0. Let k and Bk be such that f(u, v) > 1/k for all (u, v) ∈ Bk. Our

assumption W > 0 ensures that there exists k such that Pk :=
∫
[0,1]2

1Bk
dudv > 0. Then,

γ =

∫
[0,1]3

f(u1, u2)f(u1, u3) du1du2du3

≥
∫
π1(Bk)×π2(Bk)×π2(Bk)

k−2 du1du2du3 ≥ P 2
k k

−2 > 0

where πj(Bk) denotes the projection of Bk onto the jth coordinate. Hence, we have consis-

tency if n3/2pn → ∞. If n3/2pn ≈ 1, the β̃(1) − β(1) converges to a normal distribution. If

n3/2pn ≺ 1, β̃(1) − β(1) diverges. Hence, we have consistency if and only if n3/2pn → ∞
Next, consider diffusion centrality. Note that:

n∑
i=1

C
(T )
i ε

(T )
i =

T∑
t=1

δt · ι′nAtε(T ) ,
n∑

i=1

(
C

(T )
i

)2
=

T∑
t=1

δ2t · ι′nA2tιn .

We will identify the dominant terms in the numerator and denominator respectively in each

regime of pn. For t ≥ 2, write:

[
At
]
ij
= ptn

n∑
k1=1

n∑
k2=1

· · ·
n∑

kt−1=1

f(Ui, Uk1)f(Uk1 , Uk2) · · · f(Ukt−1 , Uj) .
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Applying the CLT for U-statistics as before, we have that

ι′nA
tε(T ) = ptn

n∑
i=1

n∑
j=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

kt−1=1

f(Ui, Uk1)f(Uk1 , Uk2) · · · f(Ukt−1 , Uj)ε
(T )
j = Op

(
ptnn

t+1/2
)
.

Similarly,

ι′nA
2tιn = p2tn

n∑
i=1

n∑
j=1

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t−1=1

f(Ui, Uk1)f(Uk1 , Uk2) · · · f(Uk2t−1 , Uj) = Op

(
p2tn n

2t+1
)
.

(15)

Next, suppose npn ≻ 1. Then the dominant terms in the numerator and denominator are of

order O(pTnn
T+1/2) and O(p2Tn n2T+1) respectively. As such,

β̃(T ) − β(T ) = Op(p
−T
n n−T−1/2) = op(1) .

Suppose instead that npn ≈ 1. Then, all terms in the numerator are of the same order.

The same is true for the denominator. As before, β̃(T ) − β(T ) = Op(n
−1/2) = op(1).

Finally, suppose npn ≺ 1. In this regime, diffusion is equivalent to degree to a first order.

The dominant terms in the numerator and denominator are of order O(pnn
3/2) and O(p2nn

3)

respectively. Then, as before, we obtain consistency if and only if n3/2pn → ∞.

Lastly, consider eigenvector centrality. Given our assumptions, v1(A) is well-defined with

high probability. Next note that by construction,
∑n

i=1

(
C

(∞)
i

)2
= a2n . Furthermore, by our

assumptions,

E

[
n∑

i=1

C
(∞)
i ε

(∞)
i

∣∣U] =
n∑

i=1

C
(∞)
i E

[
ε
(∞)
i

∣∣U] = 0

Var

[
n∑

i=1

C
(∞)
i ε

(∞)
i

∣∣U] =
n∑

i=1

(
C

(d)
i

)2
Var

[
ε
(∞)
i

∣∣U] ≤ a2nσ̄
2 .

As such,

Var
[
β̃(∞) − β(∞)

]
≤ σ̄2

a2n
→ 0 if an → ∞ .

Thus, an → ∞ implies that β̃(∞) L2→ β(∞).

Necessity follows from the counterexample in our main text, reproduced here for com-
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pleteness. Suppose f = pn · 1 so that A = pnιnι
′
n. Then C(∞)(A) = anιn/

√
n. Hence,

β̃(∞) =

√
n

an
· Y

′ιn
ι′nιn

= β(∞) +
1

an
√
n

n∑
i=1

ε
(∞)
i .

Under our assumptions, 1√
n

∑n
i=1 ε

(∞)
i

d→ N(0,Var[ε
(∞)
i ]). For β̃(∞) to be consistent for β(∞),

it is therefore necessary for an → ∞.

D.2 Proof of Theorem 2

We first write:

β̂(d) = β(d) + β(d)

(
Ĉ(d)

)′ (
C(d) − Ĉ(d)

)
(
Ĉ(d)

)′
Ĉ(d)

+

(
Ĉ(d)

)′
ε(d)(

Ĉ(d)
)′
Ĉ(d)

For convenience, denote

Âij = pnf(Ui, Uj) + ξij , E[ξij |Ui, Uj] = 0 .

Also let ξi =
∑n

j=1 ξij =
∑

j ̸=i ξij and ξ = (ξ1, ..., ξn)
′. Finally, let ξ by the n × n matrix

with (i, j)th entry ξij. Note that ξ = ξιn. By Assumption 2, ξij ⊥⊥ ε
(d)
k |U for all i, j, k and

d ∈ {1, T,∞}.

D.2.1 Degree

We first show that npn ≻ 1 is sufficient for consistency of β̂(1). Using our new notation, the

numerator is: (
Ĉ(1)

)′
ε(1) = C(1)ε(1) + ξ′ε(1) .
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By conditional independence of ξ and ε(1), E
[
ξ′ε(1)

]
= 0

Var
[
ξ′ε(1) |U

]
= Var

[
2

n∑
i=1

∑
j>i

ξijε
(1)
i

∣∣∣∣U
]
= 4

n∑
i=1

Var

[
ε
(1)
i

∑
j>i

ξij

∣∣∣∣U
]

= 4
n∑

i=1

(
E

[(
ε
(1)
i

)2
|U
]∑

j>i

E
[
ξ2ij |U

])

≤ 2σ̄2

n∑
i=1

∑
j>i

pnf(Ui, Uj) (1− pnf(Ui, Uj))

≤ 2σ̄2

n∑
i=1

∑
j>i

pnf(Ui, Uj)

Taking expectations over U , we have that

Var
[
ξ′ε(1)

]
≤ 2σ̄2n2pn ·W ⇒ ξ′ε(1) = Op(npn

1/2)

Given Equation (13), C(1)ε(1) = Op(n
3/2pn) is thus dominant in the numerator if npn ≻ 1.

Next, consider the denominator, which has the form:(
Ĉ(1)

)′
Ĉ(1) =

(
C(1)

)′
C(1) + 2

(
C(1)

)′
ξ + ξ′ξ .

We bound the last term in L1-norm. Observe that it has conditional expectation:

E [ξ′ξ |U ] = E

 n∑
i=1

(∑
j ̸=i

ξij

)2 ∣∣∣∣U
 =

n∑
i=1

∑
j ̸=i

∑
k ̸=i

E
[
ξijξik

∣∣U]
=

n∑
i=1

∑
j ̸=i

E
[
ξ2ij
∣∣U] ≤ n∑

i=1

∑
j ̸=i

pnf(Ui, Uj) .

Taking expectations over U ,

E [ξ′ξ] ≤ n2pn ·W ⇒ ξ′ξ = Op(n
2pn) . (16)
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Next, consider the middle term, which we will bound in L2-norm. Write

E

[((
C(1)

)′
ξ
)2 ∣∣∣∣U] = E

[
n∑

i=1

n∑
j=1

C
(1)
i ξiC

(1)
j ξj

∣∣∣∣U
]

= E

[
n∑

i=1

C
(1)
i ξiC

(1)
i ξi

∣∣∣∣U
]
+ E

[
n∑

i=1

n∑
j ̸=i

C
(1)
i ξiC

(1)
j ξj

∣∣∣∣U
]

.

Note that

E

[
n∑

i=1

n∑
j ̸=i

C
(1)
i ξiC

(1)
j ξj

∣∣∣∣U
]
=

n∑
i=1

n∑
j ̸=i

C
(1)
i C

(1)
j E

[
ξiξj

∣∣U] = n∑
i=1

n∑
j ̸=i

C
(1)
i C

(1)
j E

[
ξ2ij
∣∣U]

≤
n∑

i=1

n∑
j ̸=i

C
(1)
i C

(1)
j pnf(Ui, Uj)

=
n∑

i=1

n∑
k=1

n∑
l=1

n∑
j ̸=i

p3nf(Ui, Uk)f(Ui, Ul)f(Ui, Uj)

The second equality above follows form the fact that when i ̸= j, E[ξikξjl |U ] = 0 unless

k = j and l = i. Furthermore,

E

[
n∑

i=1

C
(1)
i ξiC

(1)
i ξi

∣∣∣∣U
]
≤

n∑
i=1

(
C

(1)
i

)2
E
[
ξ2i
∣∣U] = n∑

i=1

(
C

(1)
i

)2
E

[∑
j ̸=i

ξ2ij

∣∣∣∣U
]

≤
n∑

i=1

(
C

(1)
i

)2∑
j ̸=i

pnf(Ui, Uj)

≤
n∑

i=1

n∑
k=1

n∑
l=1

p2nf(Ui, Uk)f(Ui, Ul)
∑
j ̸=i

pnf(Ui, Uj)

Taking expectation over two displays above,

E

[((
C(1)

)′
ξ
)2]

= O(n4p3n) ⇒
(
C(1)

)′
ξ = Op(n

2p3/2n ) . (17)

By Equation (14),
(
C(1)

)′
C(1) = Op(n

3p2n). Putting the rates we derived together, the

denominator is (
Ĉ(1)

)′
Ĉ(1) = Op(n

3p2n) +Op(n
2p3/2n ) +Op(n

2pn) . (18)
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Hence, npn ≻ 1 implies that (
Ĉ(1)

)′
ε(1)(

Ĉ(1)
)′
Ĉ(1)

p→ 0 .

It remains to note that (
Ĉ(1)

)′ (
C(1) − Ĉ(1)

)
=
(
C(1)

)′
ξ + ξ′ξ

so that by the rates in (16), (17) and (18),

β(d)

(
Ĉ(d)

)′ (
C(d) − Ĉ(d)

)
(
Ĉ(d)

)′
Ĉ(d)

= Op(n
−1p−1

n )
p→ 0 .

We can loosely write the above results as

β̂(1) − β(1) ≈ n2p
3/2
n + n2pn

n3p2n + n2p
3/2
n + n2pn

+
n3/2pn + np

1/2
n

n3p2n + n2p
3/2
n + n2pn

As such, β̂(1) is consistent for β(1) if npn ≻ 1.

Suppose instead that n−2 ≺ pn ≺ n−1. By our rate calculations, we can write

β̂(1) − β(1) = −β(1) · ξ
′ξ + op(n

2pn)

ξ′ξ + op(n2pn)
+ op(1)

In other words, β̂(1) p→ 0. Finally, if pn ≺ n−2, we β̂(1) − β(1),

β̂(1) =
ξ′ε(1)

ξ′ξ
+ op(1) = Op(n

−2p−1
n )

diverges in probability.

D.2.2 Diffusion Centrality

Diffusion centrality is comprised of terms of the form:

Ât = (A+ ξ)t =
∑
B∈B̃

B

Here, B̃ = {A, ξ}t. B is a mixed product of A and ξ, and will be the central object of our

analysis. For convenience, define:
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Definition 14 (Mixed Product of Order t). A mixed product of order t is a term of the

form B =
∏t

j=1 Bj where Bj ∈ {A, ξ}. Suppose Bj = ξ for τ ≥ 0 number of j’s. We will

also say that the order of ξ in B is τ . Define J =
{
j ∈ [2t+ 1] | bkj ,kj+1

= ξkj ,kj+1

}
. Then,

J indicate the locations of the ξ in the mixed product B. Let p = (p1, ..., pr)
′ record lengths

of the contiguous blocks in J . If p1, ..., pr are all even, we say that B is even.

The dependence of J and p on B is suppressed for convenience.

Example 5. In the above notation,

B = A2ξ3Aξ2A ⇒ J = {(3, 4, 5) , (7, 8) , (13, 14, 15) , (17, 18)} , p = (3, 2, 3, 2) .

First note that degree centrality is diffusion centrality with T = 1. Since β̂(1) is incon-

sistent for β(1) when npn ≺ 1, consistency of diffusion centrality also requires that npn ≻ 1.

We show that β̂(T ) p→ β(T ) when npn ≻ 1. Write

Ĉ(T ) =

(
T∑
t=1

δtÂt

)
ιn =

(
T∑
t=1

δt (A+ ξ)t
)
ιn

Expanding the products, we can write
(
Ĉ(T )

)′
Ĉ(T ) and

(
Ĉ(T )

)′ (
Ĉ(T ) − C(T )

)
as sums

involving mixed products of A and ξ.

We seek to bound ι′nBιn in L2-norm. First note that if Bj = A for all j ∈ [t], then by

Equation (15), B = Op(n
t+1ptn). Suppose that Bj = ξ for at least one j. Then,

Lemma 2. Suppose B is a order t mixed product of A and ξ. Suppose that the order of ξ

in B is τ ≥ 1. Then, there exists α, β ∈ N, α ≥ β such that

ι′nBιn = Op

(
nt+1−α/2pt−β/2

n

)
≼ Op

(
nt+1−τ/2pt−τ/2

n

)
.

In particular,

ι′nA
tιn = Op

(
n2t+2p2tn

)
≻ n2t+2−αp2t−β

n .

Furthermore, suppose B is not even. Then,

ι′nBιn = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.

If B is even, then

ι′nBιn − E [ι′nBιn |U ] = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.
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Taking expectations over U , we therefore have that

ι′nA
tιn = Op(n

t+1ptn) ≻ ιnBιn = Op(n
t+1−α/2pt−β/2

n )

under the assumption that npn ≻ 1, as long as B contains at least one ξ. Now, we return to

the nuisance term:

β(T )

(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
(
Ĉ(T )

)′
Ĉ(T )

.

By our analysis, the dominant term in the denominator is ιnA
2T ιn = Op(n

2T+2p2Tn ). Every

term in the numerator has strictly smaller order. Hence, we conclude that the nuisance term

is op(1). It remains to show that(
Ĉ(T )

)′
ε(T )(

Ĉ(T )
)′
Ĉ(T )

≈ ιnA
T ε(T )

ιnA2T ιn

p→ 0 .

Note that the numerator is a U-statistic of order T +1. It also has mean 0 by our conditional

mean independence assumption. Hence, by the U-statistic LLN, the numerator is of order

op(n
T+1pTn ), which is again strictly smaller than that of the denominator. Conclude that

β̂(T ) p→ β(T ) if npn ≻ 1.

D.2.3 Eigenvector Centrality

Inconsistency

We first provide a counterexample under the assumption that pn satisfies Equation (5).

Let f = 1, β = 1 and suppose ε
(∞)
i ⊥⊥ Ui (By Assumption 2, ε

(∞)
i ⊥⊥ ξjk for all i, j, k ∈

[n]). Theorem 1.7, Remark 1.4 and Remark 1.8 in Alt et al. (2021b) provides the following

description of the v1(Â). Let i ∈ [n] be a vertex, Br(i) be the set of vertices which are in

the r-neighbourhood of i. Let Sr(i) = Br(i)\Br−1(i) be the sphere of radius r around i. Let

u = logn
npn log logn

. Then, w.p.a. 1, there exists ṽ such that for any η > 0,

∥ṽ − v1(Â)∥ ≤ 1

u · npn
+

(npn)
−1/2+3η

√
u

+
1

npn
. (19)

Furthermore, ṽ has the following structure:

ṽ =
R∑

r=0

ursr(i) , sr(i) =
1Sr(i)

∥1Sr(i)∥
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where R ≺ npn
log logn

and

u1 =
1

√
npn

u0 , ur ≤
(

2√
u

)r−1

u1

and u0 is defined by the normalization ∥ṽ∥ = 1. The result of Alt et al. (2021b) says that

v1(Â) is well approximated by an eigenvector that is exponentially localized around some

vertex i. This vertex is in fact the one with the highest realized degree. Let us calculate a

lower bound on u0.

1 = ṽ′ṽ =
R∑

r=1

u2
r ≤ u2

0 +
1

npn
u2
0

(
∞∑
r=1

(
4

u

)r−1
)

.

The above inequality comes from using upper bounds for ur and replacing R with ∞. Col-

lecting the u0’s, we find that w.p.a. 1,

u2
0 ≥

1

1 + 1
npn

1
1−4/u

.

Since npn, u → ∞ when pn satisfies Equation (5), we have that for n large enough, u0 ≥ 1√
2

w.p.a. 1. Now, write

β̂(∞) =
an

(
v1(Â)

)′
Y

a2n

(
v1(Â)

)′
v1(Â)

=
1

an

(
v1(Â)

)′
Y

=
1

an

(
v1(Â)

)′(
an

ιn√
n
+ ε(∞)

)

=

(
v1(Â)

)′
ιn

√
n

+

(
v1(Â)

)′
ε(∞)

an

By independence of ε(∞) and (ξ, U), we have that Var
[
v1(Â)

′ε(∞)
∣∣U] = ∥v1(Â)∥σ2 = σ2.

Hence, σ2/an is a lower bound for the variance of β̂(∞). Hence, an → ∞ is necessary for

consistency.

Suppose an → ∞. We have consistency if and only if(
v1(Â)

)′
ιn

√
n

p→ 1 ,
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in which case

β̂(∞) =

(
v1(Â)

)′
ιn

√
n

+ op(1) =
ṽ′ιn√
n
+ op(1)

Notice that the optimization problem:

max
v∈Rn

v′ιn such that ∥v∥ = 1

has solution v = ιn/
√
n and optimal value

√
n. We can also consider the constrained

optimization problem:

max
v∈Rn

v′ιn such that ∥v∥ = 1 and v1 ≥
1√
2
.

This problem has solution v1 =
1√
2
and v−1 = ιn−1/

√
2n and optimal value

γ∗ :=
1√
2
+

n− 1√
2n

The constrained maximization problem corresponds to the best case allocation of
(
v1(Â)

)
−i

that makes
(
v1(Â)

)′
ι as close to

√
n as possible, subject to the requirement that

(
v1(Â)

)
i
≥

1/
√
2. As such, w.p.a. 1, we have that

β̂(∞) ≤ γ∗
√
n
=

1√
2n

+
n− 1

n
√
2

→ 1√
2
.

Hence, β̂(∞) is bounded away from β(∞) = 1 in probability. Conclude that the estimator is

inconsistent.

Consistency

We next show that β̂(∞) p→ β(∞) when npn ≻
√

logn
log logn

. Write

β̂(∞) = β(∞) + β(∞)

(
Ĉ(∞)

)′ (
C(∞) − Ĉ(∞)

)
(
Ĉ(∞)

)′
Ĉ(∞)

+

(
Ĉ(∞)

)′
ε(∞)(

Ĉ(∞)
)′
Ĉ(∞)

(20)

= β(∞) + β(∞)
(
v1(Â)

)′ (
v1(A)− v1(Â)

)
+

1

an
v1(Â)

′ε(∞) (21)
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since
(
Ĉ(∞)

)′
Ĉ(∞) = a2n by construction. Therefore, by Lemma 1 and the Davis-Kahan

inequality (e.g. Theorem 4.5.5 in Vershynin 2018), for any ν ∈ (0, 1),

∥∥∥v1(A)− v1(Â)
∥∥∥ ≤ ∥Â− A∥

npn (λ1 − λ2)
= Op

(√ log n

log log n

/
npn

)(1−ν)/2
 = op(1)

where first equality follows from Equation (12) and the second from our assumption on npn.

Finally, note that

E
[
v1(Â)

′ε(∞)
∣∣U] ≤ ∥v1(Â)∥σ̄2 = σ̄2.

Since an → ∞, conclude that 1
an
v1(Â)

′ε(∞) p→ 0 and that β̂(∞) p→ β(∞).

D.3 Proof of Theorem 5

D.3.1 Case (a)

Although case (b) specializes to (a), we will prove (a) separately because

1. The proof for our plug-in estimator for case (a) is also the base case for an induction

argument in the proof of case (b)

2. Case (c), by Lemma 3 equivalent to case (a) to a first order.

To prove (a) first recall our analysis in the proof of Theorem 2, which yields:

β̂(1) = β(1) + β(1)

(
Ĉ(1)

)′ (
C(1) − Ĉ(1)

)
(
Ĉ(1)

)′
Ĉ(1)

+

(
Ĉ(1)

)′
ε(∞)(

Ĉ(1)
)′
Ĉ(1)

= β(1) + β(1) ι′nAξιn + ι′nξ
2ιn

ιnA2ιn + op (ιnA2ι′n)
+

Op

(
n3/2pn

)
ιnA2ιn + op (ι′nA

2ιn)
. (22)

Recall also that,

E [ι′nξιn |U ] =
n∑

i=1

∑
j ̸=i

E
[
ξ2ij |U

]
=

n∑
i=1

∑
j ̸=i

pnf(Ui, Uj) (1− pnf(Ui, Uj))

so that the unconditional expectation is

E [ι′nξιn] = Ω
(
n2pn

)
.

To obtain our desired result, we will show that ι′nAξιn converges to a normal distribution
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asymptotically once suitable scaled, and that it dominates
(
ι′nξ

2ιn − E [ι′nξιn |U ]
)
. We then

show that the population quantities in the CLT can be estimated at a sufficiently fast rate.

First observe that by Assumption 2, E [ι′nAξιn |U ] = 0. Next, define

V (1)
∗ (U) := E

[
(ι′nAξιn)

2 ∣∣U]
=
∑
j<k

pnf(Uj, Uk) (1− pnf(Uj, Uk))

(∑
i ̸=j

pnf(Ui, Uj) +
∑
i ̸=k

pnf(Ui, Uk)

)2

.

Then, by the U-statistics LLN,

1

n4p3n
V (1)
∗ (U)

p→
∫

f(U1, U2)f(U1, U3)f(U1, U4) dU+
1

2

∫
f(U1, U2)f(U2, U3)f(U3, U4) dU > 0 .

Next, define the event Υ(1) :=
{
V (1)(U) > kn4p3n

}
, where k is chosen to be 1/2 the magnitude

of the limit above. We will apply the Berry-Esseen inequality conditional on U ∈ Υ(1). Note

that by Assumption 2, ξij’s continue to be independent after conditioning. By Theorem 3.7

in Chen et al. (2011),

sup
z∈R

∣∣∣∣∣∣P
 ι′nAξιn√

V
(1)
∗ (U)

≤ z

∣∣∣∣U
− Φ(z)

∣∣∣∣∣∣ ≤ 10γ .

Next, we evaluate the third moments of the summands:

E

∣∣∣∣∣ξjk∑
i ̸=j

pnf(Ui, Uj)

∣∣∣∣∣
3 ∣∣∣∣U

 =

∣∣∣∣∣∑
i ̸=j

pnf(Ui, Uj)

∣∣∣∣∣
3

E
[
|ξjk|3

∣∣U]
≤ n3p3n · pn

As such, on Υ(1),

γ ≤
∑
j<k

n3p4n

(kn4p3n)
3/2

≈ n5p4n

n6p
9/2
n

=
1

np1/2
→ 0

where the above bound is independent of U . Furthermore, P (Υ(1)) → 1. Conclude that

ι′nAξιn√
V

(1)
∗ (U)

d→ N(0, 1) .
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It remains to show that ι′nξ
2ιn − E

[
ι′nξ

2ιn |U
]
= op

(
n2p

3/2
n

)
. Write

Γ(1) :=
∑

i1,...,i6

E
[
(ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]) (ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ])

∣∣U] .

Note that

E
[
ξi1i2ξi2i3ξi4i5ξi5i6

∣∣U] = 0 ⇒ E
[
(ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]) (ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ])

∣∣U] = 0 .

This is because for the former to hold, we must have an edge (ik, ik+1) that is of multiplicity

1, which is sufficient for making the latter conditional expectation 0. Figure 12 shows all

possible configurations of indices that will lead to E
[
ξi1i2ξi2i3ξi4i5ξi5i6

∣∣U] ̸= 0. Table 9

records the frequency of their appearance.

i j k l i j k

G1 G2

i j

G4

i j k

G3

Figure 12: The possible configurations of indices that will lead to E
[
ξijξjkξi′j′ξj′k′

∣∣U] being
non-zero. These are the only graphs that can be formed using 2 walks of length 2 and in
which each edge has multiplicity at least 2.

Graph Number of Instances E
[
ξijξjkξi′j′ξj′k′

∣∣U]
G1 n(n− 1)(n− 2)(n− 3) p2nf(Ui, Uj)f(Uk, Ul) +Op(p

3
n)

G2 n(n− 1)(n− 2) p2nf(Ui, Uj)f(Uk, Ul) +Op(p
3
n)

G3 n(n− 1)(n− 2) p2nf(Ui, Uj)f(Uk, Ul) +Op(p
3
n)

G4 n(n− 1) pnf(Ui, Uj) +Op(p
2
n)

Table 9: The number of instances of each graph, as well as the value of their conditional
expectations, up to the leading term.
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Observe that

E
[
(ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]) (ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ])

∣∣U]
̸= E

[
ξi1,i2ξi2,i3 − E [ξi1,i2ξi2,i3 |U ]

∣∣U]E [ξi4,i5ξi5,i6 − E [ξi4,i5ξi5,i6 |U ]
∣∣U]

only if there is an edge that is common to both of the above multiplicands. In particular,

G1 and G2 will not contribute to Γ(1). As such, by Table 9, Γ(1) = Op (n
3p2n). Conclude that

ι′nξ
2ιn − E

[
ι′nξ

2ιn |U
]
= Op

(
n3/2pn

)
= op

(
n2p3/2n

)
.

Using the above results, we can rewrite Equation (22) as

β̂(1) = β(1) + β(1) ι
′
nAξιn − E

[
ι′nξ

2ιn |U
]
+Op

(
n3/2pn

)(
Ĉ(1)

)
Ĉ(1)

.

Consequently,

β̂(1) − β(1)
(
1−B(1)

)
β(1)

√
V (1)

=
ι′nAξιn√

V
(1)
∗

+
Op

(
n3/2pn

)
Ωp

(
n2p

3/2
n

) d→ N(0, 1) .

where

B(1) =
((

Ĉ(1)
)
Ĉ(1)

)−1

E
[
ι′nξ

2ιn |U
]
,

V (1) =
((

Ĉ(1)
)
Ĉ(1)

)−2

V (1)
∗ .

Plug-in Estimation

Finally, we show that B̂(1) and V̂ (1) estimate B(1) and V (1) at appropriate rates. Define

V̂
(1)
∗ =

((
Ĉ(1)

)
Ĉ(1)

)−2

V̂ (1). We will show that

B̂(1) −B(1)

√
V (1)

p→ 0 ,
V̂ (1)

V (1)
=

V̂
(1)
∗

V
(1)
∗

p→ 1 .
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The first statement above is straightforward:

B̂(1) −B(1)

√
V (1)

=
1√
V

(1)
∗

∑
i ̸=j

pnf(Ui, Uj) + ξij − pnf(Ui, Uj) (1− pnf(Ui, Uj))

= Op

(
1

n2p
3/2
n

)
·
( ∑

i ̸=j

ξij︸ ︷︷ ︸
=Op(np

1/2
n )

by ((16))

+
∑
i ̸=j

p2nf
2(Ui, Uj)︸ ︷︷ ︸

=Op(n2p2n)

)
= Op

(
1

npn
+ p1/2n

)
= op(1) .

Next, consider:

2
(
V̂ (1)
∗ − V (1)

∗

)
=
∑
j ̸=k

Âjk

(
Ĉ

(1)
j + Ĉ

(1)
k

)2
− pnf(Uj, Uk) (1− pnf(Uj, Uk))

(∑
i ̸=j

pnf(Ui, Uj) +
∑
i ̸=k

pnf(Ui, Uk)

)2

=
∑
j ̸=k

Âjk

(
Ĉ

(1)
j + Ĉ

(1)
k

)2
− pnf(Uj, Uk)

(∑
i ̸=j

pnf(Ui, Uj) +
∑
i ̸=k

pnf(Ui, Uk)

)2

+Op

(
n4p4n

)
= 2

∑
j ̸=k

Ajk

(
C

(1)
j + C

(1)
k

)
(ξj + ξk)︸ ︷︷ ︸

=:Γ
(1)
1

+
∑
j ̸=k

Ajk (ξj + ξk)
2

︸ ︷︷ ︸
=:Γ

(1)
2

+
∑
j ̸=k

ξjk

(
C

(1)
j + C

(1)
k

)2
︸ ︷︷ ︸

=:Γ
(1)
3

+2
∑
j ̸=k

ξjk

(
C

(1)
j + C

(1)
k

)
(ξj + ξk)︸ ︷︷ ︸

=:Γ
(1)
4

+
∑
j ̸=k

ξjk (ξj + ξk)
2

︸ ︷︷ ︸
=:Γ

(1)
5

Recall that V 1
∗ = Ωp (n

4p3n). We will show that Γ
(1)
a = op (n

4p3n) for a ∈ [5].

Γ
(1)
1 =

∑
j,k

Ajk

(
C

(1)
j + C

(1)
k

)∑
i ̸=j

ξij +
∑
j,k

Ajk

(
C

(1)
j + C

(1)
k

)∑
i ̸=k

ξik

= 2
∑
i,j

ξij
∑
k

Ajk

(
C

(1)
j + C

(1)
k

)
by symmetry
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Taking conditional expectations,

E
[
Γ
(1)
1 |U

]
= E

(4∑
i<j

ξij
∑
k

Ajk

(
C

(1)
j + C

(1)
k

))2 ∣∣∣∣U


= 16
∑
i<j

E[ξ2ij |U ]

(∑
k

Ajk

(
C

(1)
j + C

(1)
k

))2

≤ 16n2pn · (2npn)4 since C
(1)
j ≤ npn for all j ∈ [n]

= Op

(
n6p5n

)
Hence, Γ

(1)
1 = Op

(
n3p

5/3
n

)
.

Next,

Γ
(1)
2 = 2

∑
j,k

Ajk

(∑
i ̸=j

ξij

)2

+
∑
j,k

Ajk

(∑
i ̸=j

ξij

)(∑
i ̸=k

ξik

)
.

First note that

∑
j,k

Ajk

(∑
i ̸=j

ξij

)(∑
i ̸=k

ξik

)
= ι′nξAξιn = Op

(
n7/2p5/2n

)
by Lemma 2.

Secondly, we have that

E

∑
j,k

Ajk

(∑
i ̸=j

ξij

)2
2 ∣∣∣∣U

 = E

(∑
i,j,l

ξijξjl
∑
k

Ajk

)2 ∣∣∣∣U


≤ n2p2nE
[(
ι′nξ

2ιn
)2 ∣∣U] ≤ n2p2n · n4p2n

Noting that the bound above does not depend on U , we have

Γ
(1)
2 = Op

(
n3p2n

)
+Op

(
n7/2p5/2n

)
.

Now,

E

[(
Γ
(1)
3

)2
|U
]
=
∑
j,k

E
[
ξ2jk |U

] (
C

(1)
j + C

(1)
k

)4
≤ n2pn · (2npn)4

As such, Γ
(1)
3 = Op

(
n3p

5/2
n

)
.
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By a similar argument to above, we also have that

Γ
(1)
4 = 2

∑
j,k,l

ξjkξjl

(
C

(1)
j + C

(1)
k

)
= Op (npn) ·Op

(
ιnξ

2ιn
)
= Op

(
n3p2n

)
.

Finally,

Γ
(1)
5 = 2

∑
j,k

ξjk

(∑
i ̸=j

ξij

)2

+
∑
j,k

ξjk
∑
i ̸=j

ξij
∑
l ̸=k

ξkl

First observe that∑
j,k

ξjk
∑
i ̸=j

ξij
∑
l ̸=k

ξkl = ι′nξ
3ιn = Op

(
n2p3/2n

)
by Lemma 2.

Now,

E

∑
j,k

ξjk

(∑
i ̸=j

ξij

)2
2

|U

 =
∑
i1,...i8

E [ξi1i2ξi1i3ξi1i4 · ξi5i6ξi5i7ξi5i8 |U ]

Relative to Lemma 2, here we are counting the contributions made by two three-pointed

stars. The graphs that contribute the above expectation are displayed in Figure 13. Their

frequencies and magnitudes are recorded in Table 10. Summing up the contribution of each

graph, we have that the above display is Op (n
4p2n). Hence, Γ

(1)
5 = Op (n

2pn)+Op

(
n2p

3/2
n

)
=

Op (n
2pn).

Putting all our results together, we have that

V̂ 1
∗ − V

(1)
∗

V
(1)
∗

= op(1) ,

which together with our central limit therom and result on B̂(1) implies our desired result:

Ŝ(1) :=
β̂(1) − β(1)

(
1− B̂(1)

)
β(1)
√

V̂ (1)

d→ N(0, 1) .
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i j k l

G1

G2

G3

i j k
l

i j

Figure 13: The possible configurations of indices that will lead to
E [ξi1i2ξi1i3ξi1i4 · ξi5i6ξi5i7ξi5i8 |U ] being non-zero. These are the only graphs that can
be formed using 2 3-pointed stars and in which each edge has multiplicity at least 2.

Graph Number of Instances E
[
ξijξjkξi′j′ξj′k′

∣∣U]
G1 n(n− 1)(n− 2)(n− 3) p2nf(Ui, Uj)f(Uk, Ul) +Op(p

3
n)

G2 n(n− 1)(n− 2)(n− 3) p3nf(Ui, Uj)f(Uj, Uk)f(Uk, Ul) +Op(p
4
n)

G3 n(n− 1) pnf(Ui, Uj) +Op(p
2
n)

Table 10: The number of instances of each graph, as well as the value of their conditional
expectations, up to the leading term. Note that we can consider G1 with j = k, though the
contribution of this term is strictly smaller than the contribution of G1.
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D.3.2 Case (b)

As with case (a), our strategy is to remove the bias coming from ξ2 and to obtain a central

limit theorem on the leading term of the remainder. Write

β̂(T ) = β(T ) + β(T )

(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
(
Ĉ(T )

)′
Ĉ(T )

+

(
Ĉ(T )

)′
ε(T )(

Ĉ(T )
)′
Ĉ(T )

. (23)

As before,
(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
comprises mixed products of A and ξ, whose order

with respect to ξ is at least 1. Let B be such a term. By Lemma 2, if B is even,

ι′nBιn − E [ι′nBιn |U ] = Op

(
nt+1ptn√
n
(√

npn
)τ
)

.

Otherwise,

ι′nBιn = Op

(
nt+1ptn√
n
(√

npn
)τ
)

.

In other words, once the even terms are centered, the dominant terms in
(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
are of order 2T overall, and have order 1 with respect to ξ. Such terms are dominant provided

that they attain the stated upper bounds. There are T of these, taking the form below:

ι′n

T∑
t=1

AT+t−1ξAT−tιn

=
∑
j,k

ξjk

T∑
t=1

∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,j · Ak,iT+t+2
· · ·Ai2T .i2T+1

=
∑
j<k

ξjk

T∑
t=1

(∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,j · Ak,iT+t+2
· · ·Ai2T .i2T+1

+
∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,k · Aj,iT−t+2
· · ·Ai2T .i2T+1

)

=
∑
j<k

ξjk

T∑
t=1

(∑
i

Ai1,i2Ai2,i3 · · ·AiT+t−1,j · Ak,iT+t+2
· · ·Ai2T .i2T+1

+
∑
i

Ai2T+1,i2TAi2T ,i2T−1
· · ·AiT+t+2,k · Aj,iT+t−1

· · ·Ai2.i1

)
by symmetry

=
∑
j<k

ξjk

2T∑
t=1

(∑
i

Ai1,i2Ai2,i3 · · ·Ait−1,j · Ak,it+2 · · ·Ai2T .i2T+1

)
by change of index.
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In the above display, summation over i is understood to exclude iT+t and iT+t+1, which have

been replaced by j and k. Now define

V (T )
∗ (U) := δ4TE

(ι′n T∑
t=1

AT+t−1ξAT−tιn

)2 ∣∣∣∣U


=
1

2
δ4T
∑
j,k

Ajk(1− Ajk)

(
2T∑
t=1

∑
i

Ai1,i2Ai2,i3 · · ·Ait−1,j · Ak,it+2 · · ·Ai2T .i2T+1

)2

.

We can get an intuition for the above term by considering binary A, in which case the

variance counts the number of ways two paths of length 2T +1 have at least one overlapping

edge. The archetypal motif is displayed in Figure 14.

i j

Figure 14: When A is binary, V
(T )
∗ (U) counts motifs like the one displayed. Here, the red

path and the blue path have the same length of 2T + 1 and overlap on the edge (i, j).

By the U -statistic LLN,

1

n4Tp4T−1
n

V (T )
∗

p→ δ4T
2T∑
t=1

2T∑
s=1

1

2

∫
f(U1, U2) · [f(U3, U4) · · · f(Ut+1, U1)] · [f(U2, Ut+2) · · · f(U2T , U2T+1)]

· [f(U2T+3, U2T+4) · · · f(U2T+1+s, U1)] (24)

· [f(U2, U2T+2+s) · · · f(U4T−s−1, U4T−s)] dU .

Notice that √
n4Tp4T−1

n =
n2T+1p2Tn√
n
√
npn

,

so that our conjectured leading term in fact strictly dominates all the other terms. Now, let

B be the set of even mixed products in
(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
. Furthermore, define

B(T ) =

((
Ĉ(T )

)′
Ĉ(T )

)−1 ∑
B∈B

E [ι′nBιn |U ]

V (T ) =

((
Ĉ(T )

)′
Ĉ(T )

)−2

V (T )
∗ .
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Then, (
β̂(T ) − β(T ) −B(T )

)
β(T )

√
V (T )

=

(
Ĉ(T )

)′ (
C(T ) − Ĉ(T )

)
−
∑

B∈BE [ι′nBιn |U ]√
V

(T )
∗

=
ι′n
∑T

t=1 A
T+t−1ξAT−tιn√
V

(T )
∗

+ op(1) .

The proof then proceeds similarly to Case (a). Define the event Υ(T ) :=
{
V

(T )
∗ > kn4Tp4T−1

n

}
,

where k is chosen to be 1/2 the magnitude of the limit in Equation (24). Applying the

Berry-Eseen inequality of Chen et al. (2011) conditioning on U ∈ Υ(T ) and noting that

P
(
Υ(T )

)
→ 1, we obtain:

ι′n
∑T

t=1A
T+t−1ξAT−tιn√
V

(T )
∗

d→ N(0, 1)

which yields the desired result.

Plug-in Estimation

We need to estimate the bias for B ∈ B, as well as V
(T )
∗ . We estimate V

(T )
∗ , as in case (a),

we replace Ajk with Âjk, and (1− Ajk) with 1. The proof is largely similar to that in Case

(a). It is tedious but straightforward since there are no rate requirements on the estimation

of V
(T )
∗ . We discuss them in turn.

The main challenge in inference for β(T ) arises because the standard deviation of β̂(d) is

larger than it’s bias. In order for the resulting de-biased inference method to improve mean

square error, bias estimation must occur at a sufficiently fast rate.

Our strategy is as follows. Let B ∈ B be order t and have order τ with respect to ξ.

It’s block structure is described by p = (p1, ..., pr), where each component is even. We first

claim is that there exists a function γ̃(t, A) taking the form:

γ̃(t, A) = γ̃1(t) · A+ γ̃2(t) · A2 + · · ·+ γ̃t−1(t) · At−1

such that

E [ι′nBιn |U ]− ι′n

(
At−τ

r∏
j=1

γ̃(pj, A)

)
ιn = Op

(
nt+1−τ/2pt−τ/2

n

)
.

In words, the bias of B is “close to” γ̃, a polynomial of the unobserved adjacency matrix
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A. Then provided that we have good estimators of ιnA
tιn, we will be able to estimate

E [ι′nBιn |U ] by substituting them into γ̃.

To obtain the γ̃(t, A), write:

E [ι′nBιn |U ] =
∑

i1,...it+1

E
[
Bi1i2 · · ·Bitit+1 |U

]
. (25)

We are interested in graphs induced by relationships on the nodes [n] that will lead to non-

zero contributions to the above sum. Only nodes corresponding to ξ matters, i.e. ij s.t

j ∈ J ∪ (J + 1). Hence, we are interested in graphs formed by overlaying r walks, each of

length p1, ..., pr. For a given graph G, write its order as∑
i∈rG

E
[
Bi1i2 · · ·Bitit+1 |U

]
= Op(n

α+1pβn).

where α, β ∈ N and α ≥ β. By Lemma 2, we know that

ι′nBιn = Op

(
nt+1−α/2pt−β/2

n

)
≼ Op

(
nt+1−τ/2pt−τ/2

n

)
.

Since τ ≥ 2, any graph for which α > β satisfies our criteria without bias correction. To

achieve the 1√
n
term in (D.3.2), we only need to deal with graphs for which α = β. We called

these the best case graphs in proof of 2, and they have the same characteristics as before.

Namely, every edge must have multiplicity 2 greater than 2, and each edge must involve only

one walk, since requiring an edge to be traversed by more than one walk increases α but not

β. Thus, it is sufficient to consider the walks separately.

For a given pj, we need to characterize walks for which α = β. When α = β, the order

on pn (i.e. the number of unique edges) is exactly 1 less than the order of n (i.e. the number

of nodes). That is, the only graphs that matter are paths.

Let G be a walk with length pj. Suppose that after removing duplicate edges, G is a

path of length s. Then for deterministic vectors x and y,∑
i∈rG

xi1E
[
ξi1i2 · · · ξitit+1 |U

]
yis+1 = (1 + op (1)) ·

∑
i

xi1Ai1i2 · · ·Aisis+1yis+1 .

The indices on the right hand side are unrestricted. The above assertion arises by the

following injective mapping from rG → [n]s. By definition, G is a walk of length pj which

traverses s+1 unique nodes. Let j1, ..., js, js+1 be the steps at which G reaches a new unique

node. Then our injective map is i 7→ (ij1 , ..., ijs+1).
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Example 6. Consider the walk i1 → i2 → i1 → i3, where all the nodes are distinct. Then

j = (1, 2, 4). Suppose i = (5, 10, 5, 4). Then i 7→ (5, 10, 4).

There is a small error term arising from two sources. Firstly, we are only capturing the

first order term of the E
[
ξi1i2 · · · ξitit+1 |U

]
. There are higher order terms whose magnitude

are at most of pn times this term that we omit. Second, there are paths on the right hand

side which is not in the range of our injective map. These are in turn i’s on which a given

node appears more than once. There cannot be more than ns−1 such paths. Hence, these

paths are at most Op

(
1
n

)
of the right hand side term.

Noting that G is finite, the previous display allows to write

E
[
ιnξ

tιn |U
]
=
∑
G∈G

∑
i∈rG

xi1E
[
ξi1i2 · · · ξitit+1 |U

]
yis+1 (26)

=

(
1 +Op

(
pn

1

n

))
·
∑
G∈G

x′As(G)y (27)

=

(
1 +Op

(
pn +

1

n

))
·
t−1∑
s=1

γ̃s(t) · x′As(G)y (28)

In the second equation, s(G) is the number of unique edges in G. Note that s(G) ≤ t/2 since

every edge must have multiplicity at least 2. In the last equation, we collected the powers

of A and defined γ̃s(t) to be the number of walks of length t with s unique nodes.

Let us now return to the arbitrary block B. As discussed previously, it is sufficient to

consider graphs in which each walk forms a component that is disconnected from all others.

On those graphs, each path is independent from the others. Equation (26) therefore allows

us to write

E [ι′nBιn |U ]− ι′n

(
At−τ

r∏
j=1

γ̃(pj, A)

)
ιn = Op

(
pn +

1

n

)
E [ι′nBιn |U ]

= Op

(
pn +

1

n

)
Op

(
nt+1−τ/2pt−τ/2

n

)
= Op

(
√
pn +

1√
n

)
Op

(
1√
n

)
Op

(
nt+1−τ/2pt−τ/2

n

)
.

The last equality above uses the fact that npn → ∞, yielding the desired bound. It is difficult

to provide closed-form expression for γ̃s(t) since they are highly combinatorial. However,

walks of length t are easy to enumerate on the computer for moderate t. Before proceeding,
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let us rewrite the γ̃ function in a more convenient form. Define γ(B,A) such that(
At−τ

r∏
j=1

γ̃(pj, A)

)
= γ1(B)A+ ...+ γt−1(B)At−1 (29)

Here, γt(B) = 0 because τ ≥ 2, and for each block of ξ in B, we have that every constituent

s(G) satisfies s(G) ≤ t/2.

At this point, we have found a good estimator for E [ι′nBιn |U ] in terms of the unobserved

matrix A. In order to estimate E [ι′nBιn |U ] at a good rate, we need good estimators for

ιnA
tιn. Let g̃(t) be our estimator for ιnA

tιn. Then we seek:

ι′nA
tιn − ι′ng̃(t)ιn = op

(
1√
n

)
Op

(
nt+1ptn

)
. (30)

Suppose we estimate ιnA
tιn with the naive estimator: ιnÂ

tιn. Our proofs, in particular

Lemma 2, yields that the estimator is consistent at the following rate

ιnA
tιn

ιnÂtιn
= 1 +Op

(
1

npn

)
,

so that the error term is too large relative to the variance.

Next write

ι′nÂ
tιn = ι′nA

tιn +
∑
B∈B

ι′nBιn .

Suppose for now that we have access to g̃(1), ..., g̃(t − 1) satisfying Equation (30). We can

then consider defining

g̃(t) := ι′nÂ
tιn −

∑
B∈B

γ(B, g)

where with some abuse of notation, we define

γ(B, g) := γ1(B)g̃(1) + ...+ γt−1(B)g̃(t− 1) .

Since g̃(1), ..., g̃(t− 1) satisfy Equation (30), and noting that B is finite,

ι′nÂ
tιn −

∑
B∈B

γ(B, g) = ι′nA
tιn +Op

(
1√
n

)
Op

(
nt+1/2pt−1/2

n

)
.

which satisfies Equation (30) since 1√
npn

→ 0. As such, we can recursively construct g̃(t)

from g̃(1), ..., g̃(t− 1). However, as our proofs in Case (a) shows, g̃(1) = Â is valid. Rewrite
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g̃ such that g̃ = g and

g(t) = g1(t)Â+ · · ·+ gt(t)Â
t .

The coefficients of g(t) are presented in Table 11.

With γ(·, g) in hand, we are able to estimate E [ιnBιn |U ] for arbitrary B. Recall that

the bias of β̂(T ) is

B(T )
∗ =

∑
B∈B

δt(B)ι′nBιn .

As before, B is the set of even Bs that are generated. Note that this set is “asymmetric” in

that At appears as a product from the left but not the right. t(B) is the function giving the

order of B. Debiasing by our estimators, we obtain that

∑
B∈B

δt(B)ι′n (B − γ(B, g)) ιn = Op

(
1√
n

)
Op

(
n2Tp2T−1

n

)
.

This is because B is even and of order at most 2T . As such, since τ ≥ 2,

ι′nB − γ(B, g)ιn = Op

(
1√
n

)
Op

(
n2T+1−τ/2p2T−τ/2

n

)
= Op

(
1√
n

)
Op

(
n2Tp2T−1

n

)
Now, since

√
V

(T )
∗ = Ωp

(
n2Tp

2T−1/2
n

)
, we conclude that

B̂
(T )
∗ −B

(T )
∗√

V
(T )
∗

= op(1) .

Substituting our computed values of γ̃s(t) and g(t) yields the formula given in Appendix A.

D.3.3 Case (c)

Suppose β(d) = 0 for d ∈ {1, T}. We can write

β̂(T ) =

(
Ĉ(T )

)′
ε(T )(

Ĉ(T )
)′
Ĉ(T )

=
ιn

(∑T
t=1 δ

tÂt
)
ε(T )

ιn

(∑T
t=1 δ

tÂt
)2

ιn
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r
t

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 -1 2 -5 12 -20 -12 295 -1584 5623 -12530 -1806 186702
2 1 -2 4 -8 8 42 -340 1510 -4712 8408 13088 -194318
3 1 -3 7 -14 10 96 -655 2552 -6190 1068 83832
4 1 -4 11 -24 22 142 -1043 4078 -9444 -2150
5 1 -5 16 -39 48 176 -1558 6542 -16554
6 1 -6 22 -60 94 178 -2170 10028
7 1 -7 29 -88 167 122 -2836
8 1 -8 37 -124 275 -26
9 1 -9 46 -169 427
10 1 -10 56 -224
11 1 -11 67
12 1 -12
13 1

r
t

14 15 16 17 18 19 20

1 -1101323 3938488 -7533897 -13585642 198008994 -999517964 3021609795
2 981200 -3101066 4292162 20354680 -188470026 832916330 -2145039932
3 -530446 2005368 -4310942 -4074647 91205574 -496007668 1614224856
4 151068 -879116 3034670 -4907736 -17574745 186419358 -871382472
5 4548 213314 -1337608 4785512 -8228118 -25081260 283591630
6 -28178 22194 281946 -2019280 7855844 -16309132 -23702626
7 14700 -46038 58866 333648 -2899960 12404253 -30152117
8 -3480 20662 -72062 124800 337020 -3955392 18806973
9 -309 -3984 27916 -108304 232853 246742 -5122509
10 633 -780 -4178 36312 -156828 398862 -1830
11 -290 904 -1503 -3829 45486 -219512 641615
12 79 -368 1252 -2554 -2629 54786 -297780
13 -13 92 -459 1690 -4022 -182 63185
14 1 -14 106 -564 2232 -6010 4010
15 1 -15 121 -684 2893 -8636
16 1 -16 137 -820 3689
17 1 -17 154 -973
18 1 -18 172
19 1 -19
20 1

Table 11: The coefficients gr(t) for t ≤ 20.
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Let B be a mixed product of order t, and let it have order τ ≥ 0 with respect to ξ. Then,

E

[((
ε(T )
)′
Bιn

)2
|U, ξ

]
=

n∑
i1=1

n∑
i2=1

· · ·
n∑

i2t+2=1

E
[
ε
(T )
i1

ε
(T )
it+2

|U, ξ
]
Bi1,i2Bi2,i3 · · ·Bit,it+1 ·Bit+2,it+3Bit+3,it+4 · · ·Bi2t+1,k2t+2

Now, E
[
ε
(T )
i1

ε
(T )
it+2

|U, ξ
]
= 0 unless i1 = it+2. Hence, we only need to consider sequences i

where i1 = it+2. Under this restriction,

E

[((
ε(T )
)′
Bιn

)2
|U, ξ

]
≤ σ̄2ι′nB̃ιn .

where B̃ is of order 2t + 1 unconditionally, and of order 2τ with respect to ξ. Conclude by

Lemma 2 that

(
ε(T )
)′
Bιn = Op

(√
n2t+3/2−τp2t+1−τ

n

)
= Op

(
nt+3/4−τ/2pt+1/2−τ/2

n

)
. (31)

Next, write

1

pTn
ι′nA

T ε(T ) =
∑

i1,...,iT+1

f(Ui1 , Ui2) · · · f(UiT , UiT+1
)ε

(T )
iT+1

=
∑

i∈IT+1

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
(iπ(T+1))

.

where IT+1 comprises all unordered subsets of T + 1 integers chosen from [n] and ΠT+1 is

the set of permutations on [T +1]. We can hence define the following symmetric U -statistic

kernel of order T + 1:

h
((

Ui1 , ε
(T )
i1

)
, · · · ,

(
UiT+1

, ε
(T )
iT+1

))
=

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
iπ(T+1)

.

Since f is bounded and ε
(T )
i has uniformly bounded conditional expectations, E[h2] < ∞.

By the U -statistic CLT (Theorem 12.3 in Van der Vaart 2000),

√
n

1(
n

T+1

) ∑
i∈IT+1

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
iπ(T+1)

d→ N
(
0 , (T + 1)2ζ1

)
,

(32)
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where

ζ1 = E
[
h
((

U1, ε
(T )
1

)
,
(
U2, ε

(T )
2

)
, · · · ,

(
UT+1, ε

(T )
T+1

))
h
((

U1, ε
(T )
1

)
,
(
UT+2, ε

(T )
T+2

)
, · · · ,

(
U2T+1, ε

(T )
2T+1

))]
= E

 ∑
π∈ΠT

∑
π′∈Π′

T

f(Uπ(1), Uπ(2)) · · · f(Uπ(T ), UT+1) · f(Uπ′(T+1), Uπ′(T+2)) · · · f(Uπ′(2T ), UT+1)
(
ε
(T )
T+1

)2
= (T !)2E

[
f(U1, U2) · · · f(UT , UT+1) · f(U1, UT+2) · · · f(U2T , U2T+1)

(
ε
(T )
1

)2]
̸= 0 by assumption.

Here, Π′
T is the set of permutations on {T + 1, ..., 2T}. As such,

ι′nA
T ε(T ) = Op

(
1√
n
nT+1pTn

)
.

Together with the bound in Equation (31), this implies that ι′nA
T ε(T ) is the dominant term

in the
(
Ĉ(T )

)′
ε(T ) Next, note that by the U -statistic LLN,

1

n2T+1

n∑
j=1

(
ιn
(
AT
)
·,j

)2 (
ε
(T )
j

)2
=

1

n2T+1

∑
i1,...,i2T+1

f(Ui1 , Ui2) · · · f(UiT , UiT+1
) · f(Ui1 , UiT+2

) · · · f(Ui2T , Ui2T+1
)
(
ε
(T )
i2T+1

)2
p→ 1

(T !)2
ζ1 .

By the usual plug-in arguments, we have that

1

n2T+1

((
Ĉ(T )

)′
Ĉ(T )

)2

V̂
(T )
0 =

1

n2T+1

n∑
j=1

(
Ĉ

(T )
j

)2 (
ε̂
(T )
j

)2
=

1

n2T+1

n∑
j=1

(
C

(T )
j

)2 (
ε
(T )
j

)
2 + op(1) by the consistency of β̂(T )

=
1

n2T+1

n∑
j=1

δ2T
(
ιn
(
AT
)
·,j

)2 (
ε
(T )
j

)2
+ op(1) by the dominance of AT
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As such, the robust/heteroskedasticity consistent t-statistic

β̂(T )√
V̂

(T )
0

=

(
Ĉ(T )

)′
ε(T )√((

Ĉ(T )
)′
Ĉ(T )

)2

V̂
(T )
0

=
n−(T+1/2)δT ι′nA

T ε(T )√
1

n2T+1

∑n
j=1 δ

2T
(
ιn (AT )·,j

)2 (
ε
(T )
j

)2 + op(1)

=

√
n

( n
T+1)

∑
i∈IT+1

∑
π∈ΠT+1

f(Uiπ(1)
, Uiπ(2)

) · · · f(Uiπ(T )
, Uiπ(T+1)

)ε
(T )
iπ(T+1)

(T + 1)!
√

1
(T !)2

ζ1
+ op(1)

d→ N(0, 1) by Equation (32)

As such, the robust/heteroskedasticity consistent t-statistic is appropriate for inference under

the null hypothesis that β(T ) = 0.

D.4 Proof of Theorem 6

We start by writing

β̂(∞) =
Y ′
(
anv1(Â)

)
(
anv1(Â)

)′ (
anv1(Â)

) = β(∞) (v1(A))
′ v1(Â) +

1

an

(
ε(∞)

)′
v1(Â) .

The main tool we use to study the above term is the following:

Lemma 3. Suppose Assumption E2 holds and that pn satisfies Equation (10). Then,

(v1(A))
′ v1(Â) = (v1(A))

′ v1(A) +
(v1(A))

′ ξv1(A)

λ1(A)
+

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 + op

(
1

(npn)
3

)
+

R∑
r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)
·Op

(
1

npn

)

and (
ε(∞)

an

)′

v1(Â) =

(
ε(∞)

an

)′

v1(A) + op

(
1

an

)
.
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Now, by the analogous arguments as in Lemma 2 and proof of Lemma 3,

(v1(A))
′ ξv1(A)

λ1(A)
= Op

(
1√

n
√
npn

)
,

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 = Op

(
1

npn

)
, (33)

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 −

E
[
(v1(A))

′ ξ2v1(A) |U
]

(λ1(A))
2 = Op

(
1√

n (npn)

)
(34)

Furthermore, by the Davis-Kahan Inequality,∣∣∣∣ 1

λs(A)
vr(A)

′vs(Â)

∣∣∣∣ ≤ ∣∣∣∣ 1

λs(A)
vr(A)

′vs(A)

∣∣∣∣+ ∥vr(A)∥ ·

∥∥∥∥∥vs(Â)− θvs(A)

λs(A)

∥∥∥∥∥ . (35)

D.4.1 Case (a)

Let us now consider individual cases in (a). starting with (iii). Suppose we require only that

pn ≻ n−1
(

logn
log logn

)1/2+η

. Then by Lemma 1, we can claim that

∥∥∥∥∥vs(Â)− θvs(A)

λs(A)

∥∥∥∥∥ = op(1)

but cannot control the rate of convergence. Nonetheless, if an ≻ npn, Equations (33) and

(35), together with Lemma 3 implies that

β̂(∞) = β(∞) +

(
ε(∞)

an

)′

v1(A) + op

(
1

an

)
. (36)

Note that bias correction is irrelevant in this regime since bias is of smaller order than an.

Suppose instead, as in Case (a) (ii) that pn ≻ n−1 log n. Then, by Theorem 1.1 in the

Supplementary Appendix to Lei and Rinaldo (2015), we can claim that∥∥∥∥∥vs(Â)− θvs(A)

λs(A)

∥∥∥∥∥ = Op

(
1

√
npn

)

Then, provided that an ≺ (npn)
3/2,

β̂(∞) − β(∞) − β(∞)E
[
(v1(A))

′ ξ2v1(A) |U
]

(λ1(A))
2 =

(
ε(∞)

an

)′

v1(A) + op

(
1

an

)
.

This time the bias correction is required.

Finally, consider Case (a) (i), when β(∞) = 0. Then it is immediate that Equation
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(36) obtains. In all three cases, the asymptotic distribution of the estimator depends on(
ε(∞)

)′
v1(A)/an. Next, notice that

Var
((

ε(∞)
)′
v1(A) |U

)
= E

[((
ε(∞)

)′
v1(A)

)2
|U
]
=

n∑
i=1

[v1(A)]
2
i E

[(
ε
(∞)
i

)2
|U
]

.

As such, by Assumption 3,

σ2 ≤ Var
((

ε(∞)
)′
v1(A) |U

)
≤ σ̄2 .

Now, as in the proof of Lemma 3, let Υ be the event that | 1√
n

∑r
i=1 ϕr(Ui)ϕs(Ui) < 1/R2.

This happens with probability approaching 1 since R is finite. On this event, ∥v∥ = 1 implies

that |vr| < 2 for all r. Furthermore, observe that since ∥f∥∞ ≤ 1, ∥ϕr∥∞ ≤ 1. As such, on

Υ, |vr(A)∥∞ ≤ 2R/
√
n. As such,

n∑
i=1

[v1(A)]
3
i E

[∣∣∣ε(∞)
i

∣∣∣3 |U
]

Var
(
(ε(∞))

′
v1(A) |U

) ≤ κ̄3

σ2

8R3

√
n

→ 0 .

Note that the bound on the right-hand side does not depend on U . Putting the above

ingredients together, we have that on Υ, the Berry-Esseen Inequality of Chen et al. (2011)

yields

sup
z∈R

∣∣∣∣∣∣P
 (

ε(∞)
)′
v1(A)√

Var
(
(ε(∞))

′
v1(A) |U

) ≤ z

− Φ(z)

∣∣∣∣∣∣ ≤ 10 · κ̄3

σ2

8R3

√
n

.

Then since P (Υ) → 1, we have that(
ε(∞)

)′
v1(A)√

Var
(
(ε(∞))

′
v1(A) |U

) d→ N(0, 1) .

Define

B(∞) =
E
[
(v1(A))

′ ξ2v1(A) |U
]

(λ1(A))
2 ,

V
(∞)
0 = Var

((
ε(∞)

)′
v1(A) |U

)
,
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Then we have that

β̂(∞) − β(∞)
(
1−B(∞)

)√
V

(∞)
0

=
ε′v1(A)√

Var
(
(ε(∞))

′
v1(A) |U

) + op (1)
d→ N(0, 1) .

The validity of plug-in estimation follows from arguments that are essentially identical

to Section D.3.3.

D.4.2 Case (b)

Suppose an ≻ n
√
pn. By Lemma 3, we have that

β̂(∞) = β(∞) + β(∞)

[
(v1(A))

′ v1(A) +
(v1(A))

′ ξv1(A)

λ1(A)
+

(v1(A))
′ ξ2v1(A)

(λ1(A))
2 + op

(
1

(npn)
3

)
+

R∑
r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)
·Op

(
1

npn

)
+ op

(
1

an

)]
.

Furthermore, since pn ≻ n−1 log n, the Davis-Kahan Inequality (Theorem 4.5.5 in Vershynin

2018), together with Theorem 1.1 in the Supplymentary Material to Lei and Rinaldo (2015)

gives us that
R∑

r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)
= Op

(
1

√
npn

)
.

As such,

β̂(∞) − β(∞)
(
1−B(∞)

)
= β(∞) (v1(A))

′ ξv1(A)

λ1(A)
+Op

(
1

(npn)
3/2

)

= β(∞) (v1(A))
′ ξv1(A)

λ1(A)
+Op

(
1

n
√
pn

)
, (37)
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since pn ≻ 1/
√
n. Now note that

Var (v1(A)
′ξv1(A) |U)

= E [(v1(A)
′ξv1(A))]

= E

(2∑
i<j

[v1(A)]i [v1(A)]j ξij

)2 ∣∣∣∣U


=
∑
i<j

[v1(A)]
2
i [v1(A)]

2
j pnf(Ui, Uj) (1− pnf(Ui, Uj))

= 4 (1 +Op(pn)) ·
∑
i<j

[v1(A)]
2
i [v1(A)]

2
j pnf(Ui, Uj)

Recall that from the proof of Lemma 3 that

A =
R∑

r=1

λ̃n

(
ϕr(U)√

n

)
ϕr(U)√

n
⇒ v1(A) =

R∑
r=1

αr
ϕr(U)√

n
.

so that |αr| ≤ 2R for all r ∈ [R] w.p.a. 1. We now argue that α1
p→ 1 and αr → 0 for r ≥ 2.

Note that we can write

Av1(A) =

(
R∑

r=1

λ̃rn

(
ϕr(U)√

n

)
ϕr(U)√

n

)(
R∑

r=1

αr
ϕr(U)√

n

)

=
R∑

r=1

λ̃rn · αrϕr ·
(
ϕr(U)√

n

)′
ϕr(U)√

n
+
∑
r ̸=s

λ̃rαs

(
ϕr(U)√

n

)
ϕs(U)√

n
.

Consequently,

(v1(A))
′Av1(A) =

R∑
r=1

λ̃rnα
2
r

((
ϕr(U)√

n

)′
ϕr(U)√

n

)2

+
R∑

r=1

R∑
s=1

λ̃rnαrαr

(
ϕr(U)√

n

)
ϕs(U)√

n

(
ϕr(U)√

n

)′(
ϕr(U)√

n

)

+
R∑

r=1

∑
s ̸=t

λ̃snαtαr

(
ϕr(U)√

n

)
ϕs(U)√

n

(
ϕr(U)√

n

)
ϕt(U)√

n
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Now,

(
ϕr(U)√

n

)′
ϕr(U)√

n
=

1

n

n∑
i=1

ϕr(Ui)ϕs(Ui) =

1 +Op

(
1√
n

)
if r = s

Op

(
1√
n

)
if r ̸= s

Since |αr| ≤ 2R w.p.a 1,

(v1(A))
′Av1(A) =

R∑
r=1

λ̃rnα
2
r + op(1)

Since |λ̃1| > |λ̃r| for r ≥ 2,

(v1(A))
′Av1(A)

λ̃1n

p→ 1 ⇒ α1
p→ 1 .

Doing a similar expansion for ∥v∥2, we arrive at

1 = ∥v1(A)∥2 =
R∑

r=1

α2
r +Op

(
1√
n

)
.

Since α1
p→ 1,

αr
p→ 0 for all r ≥ 2 . (38)

Since |ϕr(Ui)| ≤ 1, the above analysis also implies that

|[V1(A)]i| =

∣∣∣∣∣
R∑

r=1

(αr + op(1))
ϕr(Ui)√

n

∣∣∣∣∣ ≤ 1√
ns

R∑
r=1

|αr|+ op(1)

where the bound on the right hand side depends on the convergence of αr and does not vary

across i. This yields ∥v1(A)∥∞ ≤ 2/
√
n w.p.a. 1.

As such,

Var (n · v1(A)′ξv1(A) |U) = 4 (1 + op(1))
∑
i<j

ϕ1(Ui)
2ϕ1(Uj)

2pnf(Ui, Uj) .

Conclude by the U -statistics LLN that

1

n2pn
Var (n · v1(A)′ξv1(A) |U)

p→ 2E
[
ϕ1(U1)

2ϕ1(U2)
2f(U1, U2)

]
> 0 .
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As such, if we define Υ(∞) to be the event on which

Var (n · v1(A)′ξv1(A) |U) > n2pn · E
[
ϕ1(U1)

2ϕ1(U2)
2f(U1, U2)

]
and ∥v1(A)∥∞ ≤ 2/

√
n. By the Berry-Esseen Inequality,

sup
x∈R

∣∣∣∣∣P
(

(n · v1(A)) ξv1(A)√
Var (n · v1(A)′ξv1(A) |U)

≤ x

∣∣∣∣U,Υ(∞)

)
− Φ(x)

∣∣∣∣∣ ≤ 10γ

where

γ =
∑
i<j

[√
n · v1(A)

]3
i

[√
nv1(A)

]3
j

E
[
ξ3ij |U

]
(Var (n · v1(A)′ξv1(A) |U))3/2

≤ 64R4 n2pn

(n2pnE [ϕ1(U1)2ϕ1(U2)2f(U1, U2)])
3/2

→ 0

where the last bound follows because we are on the event Υ and does not depend on U

otherwise. Substituting this into Equation (37), we have that

λ1(A)
(
β̂(∞) − β(∞)

(
1−B(∞)

))
β(∞)

√
V (∞)

=
(n · v1(A)) ξv1(A)√

Var (n · v1(A)′ξv1(A) |U)
+ op(1)

d→ N(0, 1) ,

where the estimate on the error follows because λ1(A)/
√
V (∞) = Op

(
n−1p

−1/2
n

)
.

The validity of plug-in estimation follows from arguments that are essentially identical

to Section D.3.1.

D.4.3 Proof of Corollary 5

By our analysis of v1(Â) above, we have that

n · a−2
n = n

 1

n

n∑
i=1

[v1(Â)]
2
i −

(
1

n

n∑
i=1

[v1(Â)]i

)2


= 1−

(
1√
n

n∑
i=1

[v1(Â)]i

)2

since ∥v1(Â)∥ = 1

= 1−

(
1√
n

n∑
i=1

ϕ1(Ui)√
n

+ op(1)

)2

by Equation (38)

p→ 1− E [ϕ1(U1)]
2 .
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D.5 Proofs of Auxillary Lemmas

D.5.1 Proof of Lemma 1

Suppose npn ≽ log2 n. By Theorem 1.1 in the Supplementary Material to Lei and Rinaldo

(2015), noting that the constants in their bounds are uniform in Pij we have that with

probability at least 1− n−r, where r can be chosen independently of∥∥∥A− Â
∥∥∥ ≤ k(r)

√
npn

where k(r) is a constant that depends only on r.

Suppose instead that
√

logn
log logn

≺ npn ≺ log2 n. Our set up satisfies the requirements for

Corollary 3.3 in Benaych-Georges et al. (2020). Setting their ε2 =
(√

logn
log logn

/(npn)
)1−ν

and

noting that their d is our npn, we have that with probability at least 1−exp

(
− (npn)

2+ν
(

logn
log logn

)(1−ν)/2

k

)
∥∥∥A− Â

∥∥∥ ≤ k (npn)
(1+ν)/2

(
log n

log log n

)(1−ν)/4

where k is a universal constant.

Combining these two inequalities yields the desired results.

D.5.2 Proof of Lemma 2

Let B be a mixed product as in Definition 14. Suppose Bj = ξ for at least one j ∈ [t] and

write:

(ι′nBιn)
2
=

 n∑
i=1

n∑
k1=1

· · ·
n∑

kt−1=1

n∑
j=1

bi,k1bk1,k2 · · · bkt−1,j

 ·

 n∑
i′=1

n∑
k′1=1

· · ·
n∑

k′t−1=1

n∑
j′=1

bi′,k′1bk′1,k′2 · · · bk′t−1,j
′


=

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

bk1,k2bk2,k3 · · · bkt,kt+1 · bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2

In the second line we relabel the indices of summation. Each term in the above sum is a

product of 2t terms. Note that the term bkt+1,kt+2 does not exist. Next, we take conditional

expectations:

E
[
(ι′nBιn)

2 |U
]
=

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
bk1,k2bk2,k3 · · · bkt,kt+1 · bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 |U

]
.

92



Notice that each summand is non-zero if an only if for each bkj ,kj+1
= ξkj ,kj+1

, there is some

j′ such that

bkj′ ,kj′+1
= ξkj′ ,kj′+1

=

ξkj ,kj+1
or,

ξkj+1,kj

In other words, each ξij that appears in the summand appears at least twice, either as ξij or

ξji. This property depends on the positions of the A’s to the extent that they break up ξ:

neighbouring ξij and ξjk share an index so that setting i = k is sufficient for the conditional

expectation of their product to be non-zero. If ξij and ξkl are separated by at least one Apq,

we need to set k = i and l = j. The number of restrictions on the indices that are needed for

the terms to be non-zero therefore depend on J and p. In turn, these restrictions determine

the order of magnitude of the conditional expectation.

We are interested in relations on k1, ..., k2t+2 which will make

E
[
bk1,k2 · · · bkt,kt+1 · bkt+2,kt+3 · · · bk2t+1,k2t+2 |U

]
̸= 0 .

We represent this relation with the multi-graph G on nodes [n] with each ξij in the summand

corresponding to an edge from i to j. If G is the multi-graph induced by a given relationship,

we write that k1, ..., k2t+2 ∈ rG. Let the contribution of rG to the our overall sum be:∑
(k1,...,k2t+2)∈rG

E
[
bk1,k2 · · · bkt,kt+1 · bkt+2,kt+3 · · · bk2t+1,k2t+2 |U

]
=: SG

For SG to be non-zero, every edge in G must have multiplicity at least 2. Furthermore, each

G is constructed by performing a walk of length p1, followed by p2, and so on, until pr.

The walks relate G to SG in the following way. Initially, we are given a budget of n2t+2p2tn .

The budget on n is the number of times the graph G occurs, corresponding to “degree of

freedom”. The budget on pn is the number of unique ξij in the term. Given any initial vertex,

start the first walk of length p1. Add one to the multiplicity of each edge taken. In the jth

step, incrementing multiplicity from 0 to 1 is free: this corresponds to not restricting kj and

kj+1. Incrementing multiplicity from a to a + 1 for a ≥ 1 costs npn. This is because such a

step corresponds to the restriction kj = kj′ where kj′ denotes the other end point of the edge

whose multiplicity is being incremented. Furthermore, we “lose” pn when we restrict ξkj ,kj+1

to be equal to an existing edge since there are now fewer unique ξij’s. Having completed

the first walk, start the second walk. If the first edge of the second walk increments the

multiplicity of an edge from 0 to 1, it is free. However, incrementing multiplicity from a to

a+ 1 for a ≥ 1 costs n2pn. This is because placing the first edge of a new walk corresponds
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i j k l i j k

Best Case Worst Case

Figure 15: Potential G for p = (2, 2). Red indicates the first walk. Blue indicates the
second walk. In the best case (highest order), SG = n4p2n. In the worst case (lowest order),
SG = n3p2n.

the two restrictions: kj = kj′ , kj+1 = kj′+1. However, the moments decrease only by pn since

we only lose one unique edge. Continue in the following way until all walks are completed.

At the end of the walks, suppose cost is nαpβn. If every edge in G has multiplicity at least 2,

SG = n2t+2−αp2t−β
n by construction. Otherwise, SG = 0.

Suppose |J | = 2τ for some t ≥ 1. Then at least a edges have multiplicity 2. The

minimum cost of such a graph is nτpτn, so that β ≥ τ . Note also that each edge costs weakly

more n than pn. As such, α ≥ β so that 2t+2−α− (2t− β) ≤ 2. Taking expectations over

U , which preserves the order of the terms and then taking square root gives us the order of

ι′nBιn.

Tightened Bounds

Finally, we discuss when the bounds can be tightened by 1√
n
.

Note that given our discussion on costs, we know that the ideal least costly graph have

edges of multiplicity exactly 2. Furthermore, all multiplicities of a given edge must belong

to the same walk. In particular, the best case is attained only if p1, ..., pr are all even. On

the other hand, the worst case cost is n2apan, which is attained if the second edge are all the

initial edges of a new path. For an example, see Figure 15.

Violation of the above “optimality” conditions will result in α ≥ β + 1. This is sufficient

to yielding the 1/
√
n improvement. As such, if at least one of p1, ..., pr is odd,

ι′nBιn = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.
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Next, suppose that p1, ...pr are all even. Write

(ι′nBιn − E [ι′nBιn |U ])
2

=
n∑

k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])

·
(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
=
∑
G

∑
k∈rG

(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])

·
(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
In the above display, we are summing over all G. However, as before, the set of relevant G

can be substantially restricted. Define

S ′
G := E

[∑
k∈rG

(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])

·
(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
|U
]

Note that SG = 0 ⇒ S ′
G = 0. This is because SG = 0 only if there G has at least one edge

with multiplicity exactly 1, which will also set S ′
G = 0.

We now show that if G is optimal, then S ′
G = 0. Suppose G attains the optimal rate.

Then every edge has multiplicity exactly 2 formed from the same walk. For such a G, bki,ki+1

for (i, i + 1) in the first walk is independent from bki′ ,ki′+1
where (i′, i′ + 1) is in the second

walk. As such,

S ′
G :=

∑
k∈rG

E [(bk1,k2bk2,k3 · · · bkt,kt+1 − E [bk1,k2bk2,k3 · · · bkt,kt+1 |U ])]

· E
[(
bkt+2,kt+3bkt+3,kt+4 · · · bk2t+1,k2t+2 − E

[
bkt+2,kt+3bkt+3,kt+4 |U

])
|U
]
= 0.

Next, note that by the Cauchy-Schwarz inequality, that for any G′, S ′
G′ ≺ SG′ . Let G′ be a

suboptimal graph. By our study on costs of walks, SG′ ≺ 1√
n
SG. Now let G = {G |SG ̸= 0}.

Conclude that

E
[
(ι′nBιn − E [ι′nBιn |U ])

2 ∣∣U] = ∑
G∈G

S ′
G = Op

(
1√
n

)
Op (SG) = Op

(
1√
n

)
·Op

(
nt+1−τ/2pt−τ/2

n

)
.

95



D.5.3 Proof of Lemma 3

The proof of this lemma is based on the “Neumann trick” (see for instance, Eldridge et al.

2018, or Theorem 2 of Chen et al. 2021). We use the formulation by Cheng et al. (2021).

By their Lemma 1, we have that

λ1(Â)

λ1(A)
(
v1(A)′v1(Â)

)w′v1(Â) = w′v1(A) +
w′ξv1(A)

λ1(Â)︸ ︷︷ ︸
=:Λ1

+
w′ξ2v1(A)(
λ1(Â)

)2

+
∞∑
t=3

w′ξtv1(A)(
λ1(Â)

)t
︸ ︷︷ ︸

=:Λ1

+
R∑

r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)


∞∑
t=0

w′ξtvr(A)(
λr(Â)

)t
︸ ︷︷ ︸

=:Λ3

.

(39)

where we used the fact that f is rank R. In the remainder of the proof, we bound Λ1,Λ2

and Λ3 for w ∈ {v1(A), ε(∞)/an}.

Bounds for v1(A)

Suppose w = v1(A). We start by bounding Λ1. For a given ν ∈ (0, 1), choose T such that

T (1− ν) > 4 + 2/η. Then,

(npn)
−(T (1−ν)−4)

(
log n

log log n

)T (1−ν)/2

→ 0 . (40)

This is because the above condition is equivalent to

pn ≻ n−1

(
log n

log log n

) 1
2
+ 2

T (1−ν)−4

,

which follows by our choice of T since pn satisfies Equation (10). Observe that by Weyl’s

Inequality (e.g. Theorem 4.5.3 in Vershynin 2018),∥∥∥λr(Â)− λr(A)
∥∥∥ ≤ ∥ξ∥ = op (npn) , (41)

the rate estimate follows from Lemma 1. Next, note that 1
pn
A is a weighted graph obtained

by sampling U on the dense graphon f . As such, by Lemma 10.16 of Lovász (2012), λr(A)
npn

=

λr

(
1
pn
A
)
/n

p→ λ̃. In other words, w.p.a. 1, we have that λr(Â) ≥ λ̃npn/2 > 0.
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Next write∣∣∣∣∣∣∣
∞∑

t=T+1

w′ξtvr(A)(
λr(Â)

)t
∣∣∣∣∣∣∣ ≤

∞∑
t=T+1

∥w∥ ·
(

∥ξ∥
λ̃rnpn/2

)t

· ∥vr(A)∥ w.p.a. 1

= Op

∥w∥

(√
log n

log log n

/
(npn)

)T (1−ν)/2
 by Lemma 1

= Op

(
∥w∥
(npn)

2

)
by Equation (40). (42)

Meanwhile,

E


∣∣∣∣∣∣∣

T∑
t=2

w′ξtvr(A)(
λr(Â)

)t
∣∣∣∣∣∣∣
 ≤ E


∣∣∣∣∣∣∣

T∑
t=2

w′ξtvr(A)(
λ̃rnpn/2

)t
∣∣∣∣∣∣∣
 ≤

T∑
t=2

E

(w′ξtvr(A)
)2(

λ̃rnpn/2
)2t


1/2

(43)

where the last inequality above follows by an application of the triangle and Cauchy-Schwarz

inequalities. Since T is finite, it suffices to bound each term individually. The next part is

similar to the arguments in the proof Lemma 2.

Next note that if v is an eigenvector of A with eigenvalue λ, it must satisfy:

λv = Mv =
R∑

r=1

λ̃r
ϕr(U)√

n

ϕr(U)√
n

′

v

=
R∑

r=1

λ̃rvr
ϕr(U)√

n
.

Hence, v is a linear combination of ϕr(U)/
√
n’s. By convergence of the spectrum, we know

that lim supλ ≤ λ̃1. Now, let Υ be the event that | 1√
n

∑r
i=1 ϕr(Ui)ϕs(Ui) < 1/R2. This

happens with probability approaching 1 since R is finite. On this event, ∥v∥ = 1 implies

that |vr| < 2 for all r. Furthermore, observe that since ∥f∥∞ ≤ 1, ∥ϕr∥∞ ≤ 1. As such, on

Υ, |vr(A)∥∞ ≤ 2R/
√
n.
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Now, for a U ∈ Υ,

E
[
(v1(A)

′ξvr(A))
2 ∣∣U]

=
1

n2

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

{
[v1(A)]k1 [v1(A)]kt+1

[vr(A)]kt+1
[vr(A)]k2t+2

·

E
[
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2 |U

]}
≤ 16R4

n2

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2 |U

]
where the final inequality follows from our bound on ∥vr(A)∥∞ and the fact that for all

t ≤ T ,

E
[
ξtij |U

]
= pnf(Ui, Uj) (1− pnf(Ui, Uj)) · · · (1− t · pnf(Ui, Uj)) ≥ 0 if pn ≤ 1/T .

By Lemma 2,

1

n2

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2

]
=

1

n2
O
(
nt+2ptn

)
.

As such, for t ≥ 2,

E

(v1(A)′ξtvr(A))2(
λ̃rnpn/2

)2t


1/2

= O

(
1(√
npn
)t
)

. (44)

Next, suppose t = 0. Then v1(A)
′vr(A) = 0 since r ̸= 1. Suppose t = 1.

v1(A)
′ξvr(A) =

1

n

n∑
i=1

n∑
j=1

[v1(A)]i ξij [v1(A)]j

As such,

E
[
(v1(A)

′ξvr(A))
2 ∣∣U] ≤ 16R4

n2

n∑
i=1

n∑
j=1

pnf(Ui, Uj) (1− pnf(Ui, Uj))

= Op (pn) .
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Together with the fact that P (Υ) → 1, this yields

v1(A)
′ξvr(A)

λ̃rnpn/2
= Op

(
1

n
√
pn

)
. (45)

Noting that (v1(A))
′ vr(A) = 0, Equations (42), (44) and (45) yield

∞∑
t=0

w′ξtvr(A)(
λr(Â)

)t = Op

(
1

npn

)
,

∞∑
t=3

w′ξtvr(A)(
λr(Â)

)t = op

(
1

npn

)
(46)

Substituting Equations and (46) into (39) yields the desired bound for v1(A).

Bounds for ε(∞)/an

Next, suppose w = ε(∞)/an. The proof follows that for v1(A) up to Equation (43). To

proceed, recall that conditional on U , ξ ⊥⊥ ε(∞). Conditioning again on the event Υ,

E

((ε(∞)

an

)′

ξtvr(A)

)2 ∣∣U, ξ


=
1

n · a2n

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

{
E
[
ε
(∞)
k1

ε
(∞)
kt+2

|U, ξ
]
[vr(A)]kt+1

[vr(A)]k2t+2
·

ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2

}
≤ 4R2

n · a2n

n∑
k1=1

n∑
k2=1

· · ·
n∑

k2t+2=1

E
[
ε
(∞)
k1

ε
(∞)
kt+2

|U, ξ
]
ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξkt+2,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2

Recall that conditional on U , ξ ⊥⊥ ε(∞). If k1 ̸= kt+2, we can write:

E
[
ε
(∞)
k1

ε
(∞)
kt+2

|U, ξ
]
= E

[
E
[
ε
(∞)
k1

| ε(∞)
k2

, U, ξ
]
ε
(∞)
kt+2

|U, ξ
]

= E
[
E
[
ε
(∞)
k1

|Uk1

]
ε
(∞)
kt+2

|U, ξ
]

= E
[
ε
(∞)
k1

|Uk1

]
E
[
ε
(∞)
kt+2

|Ukt+2

]
= 0 .
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Hence, we only need to consider sequences where kt+2 = k1, so that

E

((ε(∞)

an

)′

ξtvr(A)

)2 ∣∣U, ξ


≤ σ̄2

n · an

n∑
k1=1

· · ·
n∑

kt+1=1

n∑
kt+3=1

· · ·
n∑

k2t+2=1

ξk1,k2ξk2,k3 · · · ξkt,kt+1 · ξk1,kt+3ξkt+3,kt+4 · · · ξk2t+1,k2t+2

=
σ̄2

n · an
ιξ2t+1ι

Taking expectations over U and ξ, we have that

E

((ε(∞)

an

)′

ξtvr(A)

)2
 =

σ̄2

n · a2n
O
(
nt+1pt+1/2

n

)
where the rate estimates again follow from Lemma 2. The order on n is smaller than the

“best case” by n1/2 due to the fact that 2t + 1 is odd, so that at least one edge will not be

optimally paired. As such, for t ≥ 1,

E

((ε(∞)/an)
′ξtvr(A)

)2(
λ̃rnpn/2

)2t


1/2

= O

(
p
1/4
n

an
(√

npn
)t
)

= o

(
1

an

)
. (47)

Note that when t = 1, the above bound implies that Λ1 = op
(
(an)

−1) for w = ε(∞)/an. If

t = 0, (
ε(∞)

an

)′

vr(A) =
1

an
√
n

n∑
i=1

ϕr(Ui)ε
(∞)
i = Op

(
1

an

)
(48)

Combining our last two estimates, we have that

T∑
t=0

(
ε(∞)/an

)′
ξtvr(A)(

λ̃rnpn/2
)t = Op

(
1

an

)
(49)

Let Υ̌ be the event that λr(Â) ≥ λ̃rnpn/2 and

∥ξ∥ ≤ √
npn

(
k log n

log log n

)1/4

,
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where k is the constant in Lemma 1. Then P (Υ̌) → 1 by Lemma 1 and Equation (41).

Furthermore,

P


∣∣∣∣∣∣∣

∞∑
t=T+1

(
ε(∞)

)′
ξtvr(A)(

λr(Â)
)t

∣∣∣∣∣∣∣ ≤ x

∣∣∣∣∣U, ξ, Υ̌
 ≤ 1

x2
E


 ∞∑

t=T+1

(
ε(∞)

)′
ξtvr(A)(

λr(Â)
)t


2 ∣∣∣∣∣U, ξ, Υ̌


≤ 1

x2
σ̄2

∥∥∥∥∥∥∥
∞∑

t=T+1

ξtvr(A)(
λr(Â)

)t
∥∥∥∥∥∥∥
2

≤
∞∑

t=T+1

∥ξ∥2t

≤ k̃

npn
by Equation (40), on the event Υ̌.

The bound on the right hand side does not depend on U and ξ once we condition on Υ̌.

Hence,

P


∣∣∣∣∣∣∣

∞∑
t=T+1

(
ε(∞)

)′
ξtvr(A)(

λr(Â)
)t

∣∣∣∣∣∣∣ ≤ x

 ≤ P
(
Υ̌
)
P


∣∣∣∣∣∣∣

∞∑
t=T+1

(
ε(∞)

)
ξtvr(A)(

λr(Â)
)t

∣∣∣∣∣∣∣ ≤ x

∣∣∣∣∣ Υ̌
+ 1− P

(
Υ̌
)

≤ k̃

npn
+ 1− P

(
Υ̌
)
→ 0 .

Hence, we conclude that

∞∑
t=T+1

(
ε(∞)/an

)′
ξtvr(A)(

λr(Â)
)t =

1

an
op(1) = op

(
1

an

)
. (50)

Next, note that∣∣∣∣ 1

λs(A)
vr(A)

′vs(Â)

∣∣∣∣ ≤ ∣∣∣∣ 1

λs(A)
vr(A)

′vs(A)

∣∣∣∣+ ∥vr(A)∥ ·

∥∥∥∥∥vs(Â)− θvs(A)

2λ̃snpn

∥∥∥∥∥+ op(1)

=

∣∣∣∣ 1

λs(A)
vr(A)

′vs(A)

∣∣∣∣+ op(1) ,

(51)

where the last equation follows because by the Davis-Kahan Inequality (Theorem 4.5.5 in

Vershynin (2018)),

∥vs(Â)− θvs(A)∥ ≤

∥∥∥Â− A
∥∥∥

∆min · npn
= op(1) by Lemma 1.
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As before, since vr(A)
′v1(A) = 0 for all r ≥ 2, we can write Λ3

R∑
r=2

λr(A)

λ1(A)

vr(A)
′v1(Â)

vr(A)′vr(Â)︸ ︷︷ ︸
= op(1) by Eq. (51)

{
T∑
t=0

(
ε(∞)/an

)′
ξtvr(A)(

λr(Â)
)t

︸ ︷︷ ︸
= Op

(
a−1
n

)
by Eq. (49)

+
∞∑

t=T+1

(
ε(∞)/an

)′
ξtvr(A)(

λr(Â)
)t

︸ ︷︷ ︸
= op

(
a−1
n

)
by Eq. (50)

}
= op

(
1

an

)
.

(52)

Finally, we note that by arguments identical to the above,

∞∑
t=1

(ε/an)
′ ξtv1(A)(

λ1(Â)
)t =

T∑
t=1

(ε/an)
′ ξtv1(A)(

λ1(Â)
)t

︸ ︷︷ ︸
=op(a−1

n ) by Eq. (47)

+
∞∑

t=T+1

w′ξtv1(A)(
λ1(Â)

)t
︸ ︷︷ ︸

= op
(
a−1
n

)
by Eq. (50)

= op

(
1

an

)
. (53)

We conclude by remarking that from Equation (51),

λ1(Â)

λ1(A)
(
v1(A)′v1(Â)

) =
λ1(A)

λ1(A) (v1(A)′v1(A))
+ op(1) ,

so that the LHS of Equation (39) also converges in probability to w′v1(Â).
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